Supra-Monolayer Coverages on Small Metal Clusters and Their Effects on H₂ Chemisorption Particle Size Estimates

Abdulrahman S. Almithn and David D. Hibbitts*

Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611, United States *Corresponding author: hibbitts@ufl.edu

Supporting Information

Table of Contents

S1. Density functional theory models	. 3
S2. H* filling pathways for Ir particles	. 4
S3. Images of the minimum energy pathway of filling Ir particles	11
S4. Saturation coverages at ΔE_{diff}^{crit} for all Ir and Pt particles	18
S5. Effects of Corner/Edge H* on Terrace H* Characteristics	20
S6. Effect of H* coverage on M _s –M _s bond distance	21

List of Figures

Scheme 14
Scheme 25
Scheme 3
Scheme 47
Scheme 5
Scheme 69
Scheme 710
51
5211
\$312
S413
S514
\$615
S716
S817
59
\$1019
511
\$1221

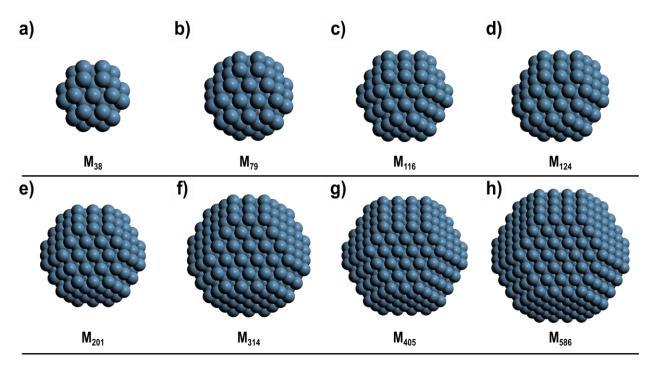
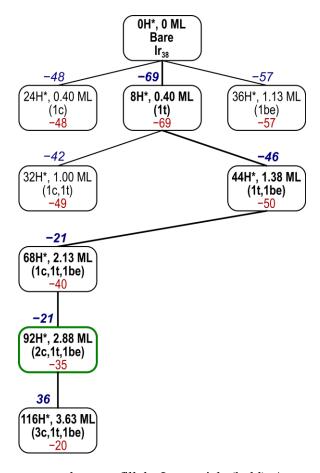
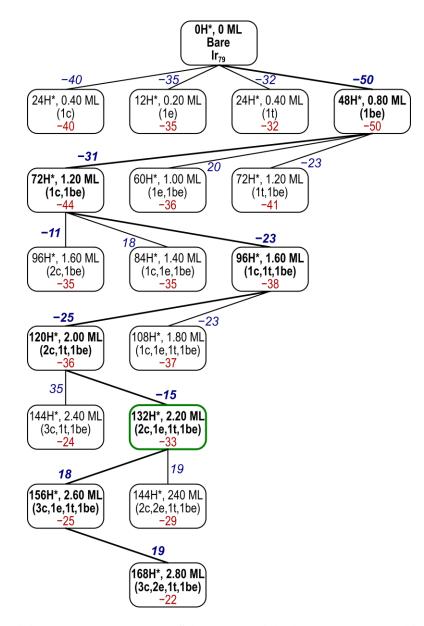
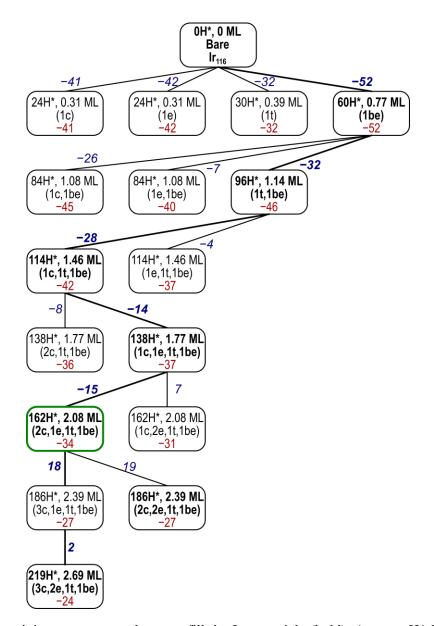
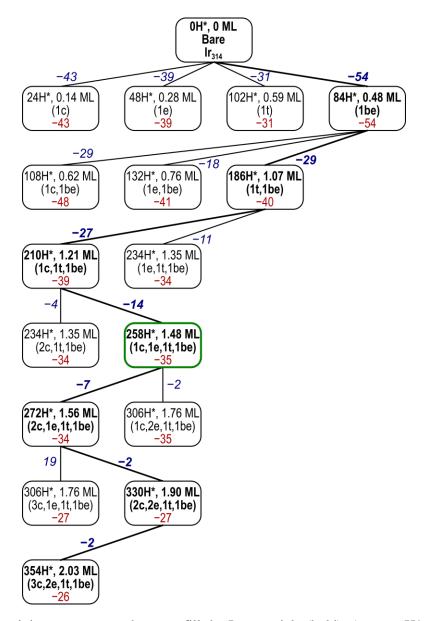
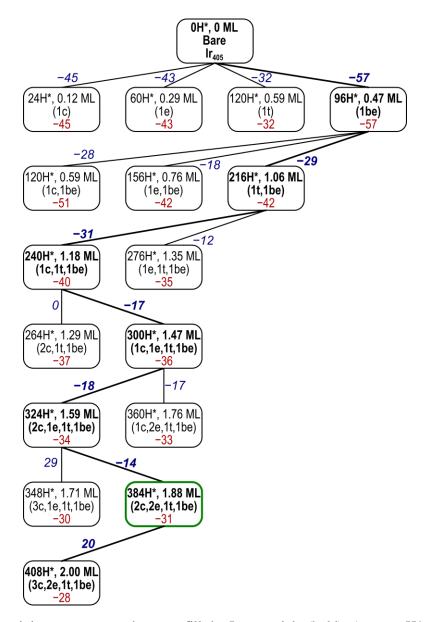




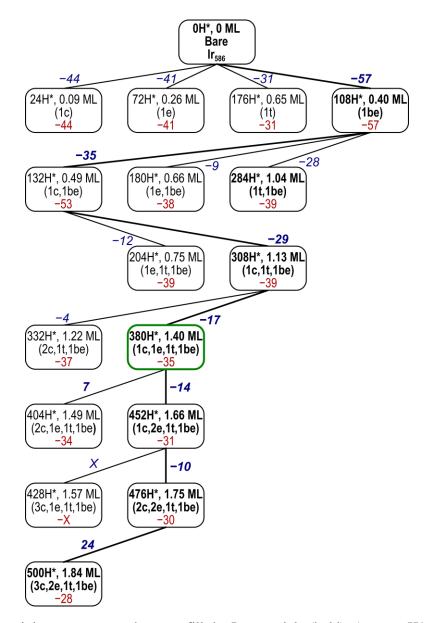
Figure S1. Structural models of all cubo-octahedral particles examined in this study.


S2. H* filling pathways for Ir particles

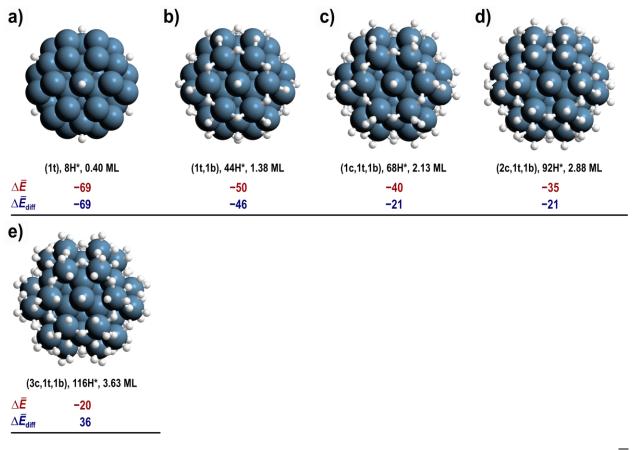

Scheme S1. The minimum energy pathway to fill the Ir₃₈ particle (bold). Average H* binding energies ($\Delta \overline{E}$, red) and average differential binding energies ($\Delta \overline{E}_{diff}$, blue) are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.


Scheme S2. The minimum energy pathway to fill the Ir₇₉ particle (bold). Average H* binding energies ($\Delta \overline{E}$, red) and average differential binding energies ($\Delta \overline{E}_{diff}$, blue) are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.

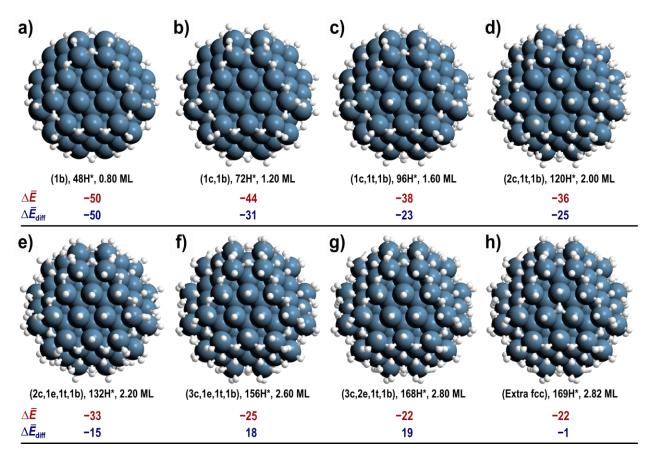

Scheme S3. The minimum energy pathway to fill the Ir₁₁₆ particle (bold). Average H* binding energies $(\Delta \overline{E}, \text{ red})$ and average differential binding energies $(\Delta \overline{E}_{\text{diff}}, \text{ blue})$ are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.


Scheme S4. The minimum energy pathway to fill the Ir₁₂₄ particle (bold). Average H* binding energies ($\Delta \overline{E}$, red) and average differential binding energies ($\Delta \overline{E}_{diff}$, blue) are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.

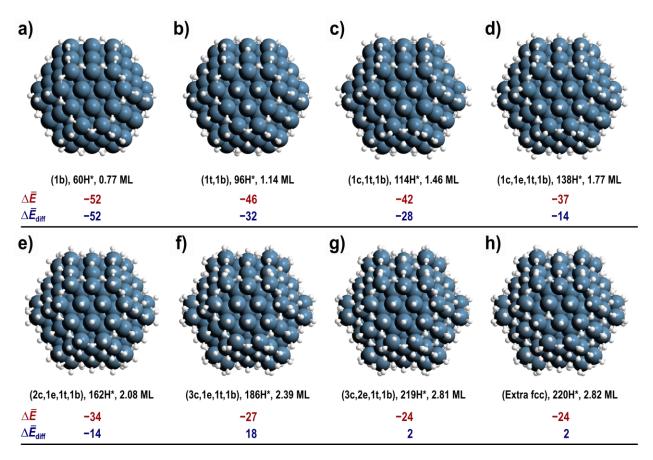
Scheme S5. The minimum energy pathway to fill the Ir₃₁₄ particle (bold). Average H* binding energies ($\Delta \overline{E}$, red) and average differential binding energies ($\Delta \overline{E}_{diff}$, blue) are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.

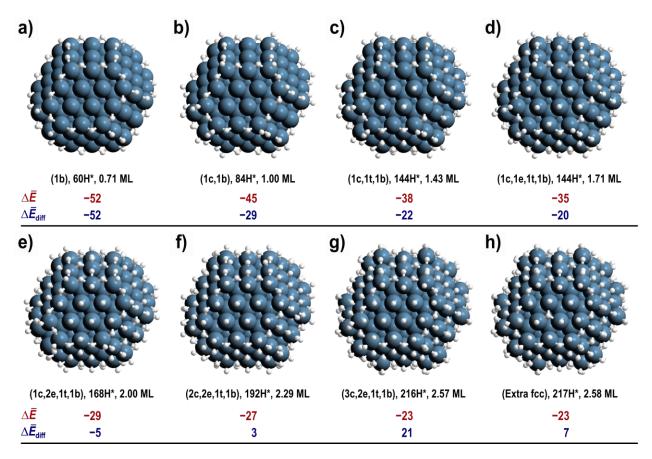


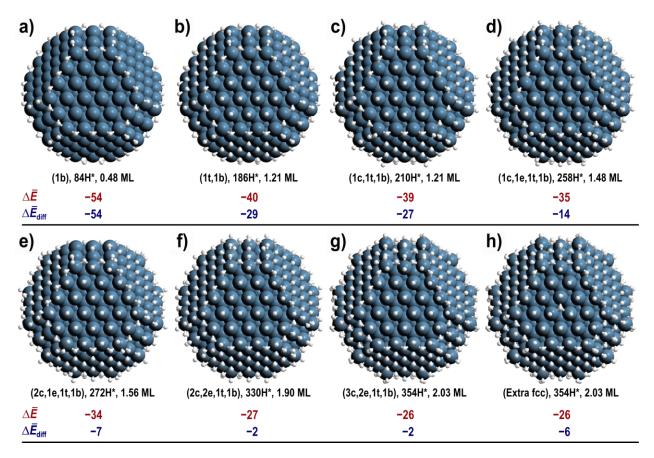
Scheme S6. The minimum energy pathway to fill the Ir₄₀₅ particle (bold). Average H* binding energies ($\Delta \overline{E}$, red) and average differential binding energies ($\Delta \overline{E}_{diff}$, blue) are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.

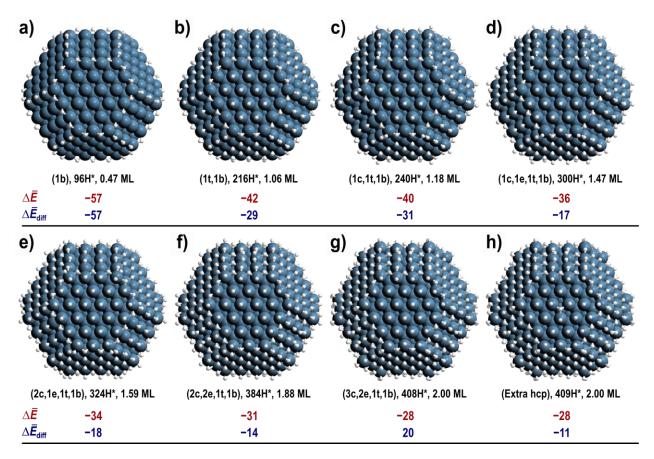


Scheme S7. The minimum energy pathway to fill the Ir₅₈₆ particle (bold). Average H* binding energies ($\Delta \overline{E}$, red) and average differential binding energies ($\Delta \overline{E}_{diff}$, blue) are shown in kJ mol⁻¹. Each state shows the number of H* atoms, the H* coverage, and the occupancy of corner (c), edge (e), terrace (t), and bridging-edge (be) H* sites.


S3. Images of the minimum energy pathway of filling Ir particles


Figure S2. The minimum energy pathway of filling the Ir₃₈ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.


Figure S3. The minimum energy pathway of filling the Ir₇₉ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.


Figure S4. The minimum energy pathway of filling the Ir₁₁₆ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.

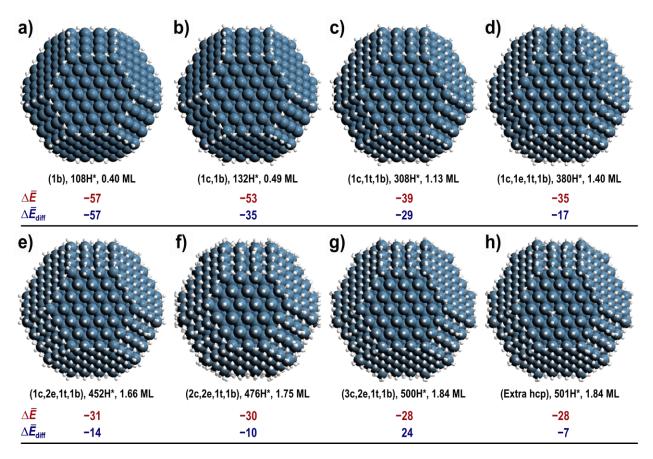

Figure S5. The minimum energy pathway of filling the Ir₁₂₄ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.

Figure S6. The minimum energy pathway of filling the Ir₃₁₄ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.

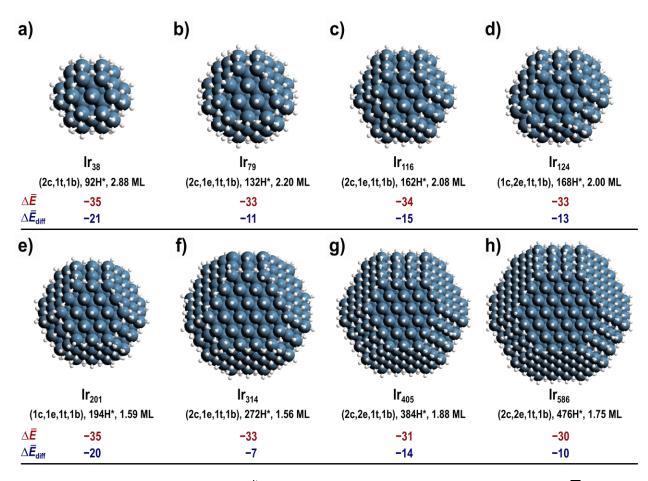


Figure S7. The minimum energy pathway of filling the Ir₄₀₅ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.

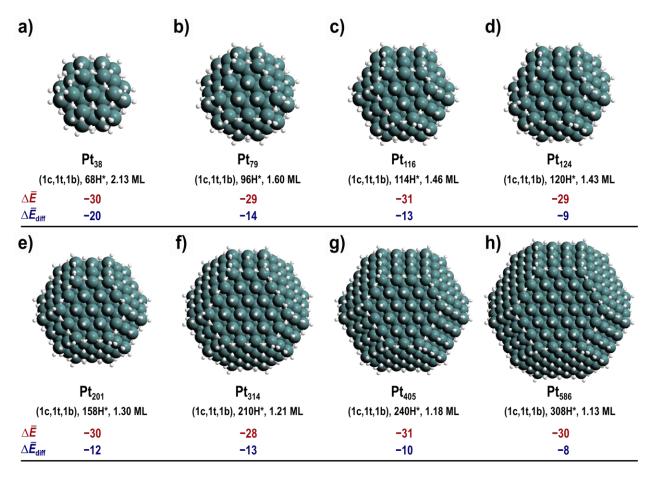


Figure S8. The minimum energy pathway of filling the Ir₅₈₆ particle. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{diff}$ (blue) in kJ mol⁻¹.

S4. Saturation coverages at ΔE_{diff}^{crit} for all Ir and Pt particles

Figure S9. Saturation coverages at $\Delta E_{\text{diff}}^{\text{crit}}$ for all Ir particles. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{\text{diff}}$ (blue) in kJ mol⁻¹.

Figure S10. Saturation coverages at $\Delta E_{\text{diff}}^{\text{crit}}$ for all Pt particles. Shown beneath each image are $\Delta \overline{E}$ (red) and $\Delta \overline{E}_{\text{diff}}$ (blue) in kJ mol⁻¹.

S5. Effects of Corner/Edge H* on Terrace H* Characteristics

Here, we examine the effect of H* population on corners and edges on the binding energy of a single terrace H* atom without altering the coverage of all the other terrace sites. The binding energy of the central H* atom in Ir₃₈ particle changes dramatically from -74 kJ mol⁻¹ at 0.25 ML (1t) to -22 kJ mol^{-1} after the corner/corner bridging sites are filled (1t.1be, 1.38 ML) (Fig. S11a). The (111) terrace atoms on the Ir_{38} particle are directly adjacent to the corner atoms of the particle, as such, adsorbing H* to those undercoordinated atoms destabilizes the terrace H* atom via local through-surface interactions. The effect of increasing the coverage of corner atoms then becomes weaker and terrace H* binds with -16 kJ mol^{-1} in the fully covered state (3c,1t,1be, 3.63 ML). Large particles also do not exhibit a sharp change in terrace H* binding energy with increasing coverage of low-coordinated atoms (average of -20 kJ mol⁻¹ at 0.5 ML and -16 kJ mol⁻¹ at 2.0 ML), because the central terrace H* atoms being considered are not adjacent to the edges and corners of the nanoparticles and the through-space interactions among H* atoms are weak. Pt particles exhibit different trends and terrace H* binding energy weakens with increasing coverage even for large particles (Fig. S11b). The terrace H* binding energy changes from -68 kJ mol^{-1} at 0.25 ML (1t) to -19 kJ mol⁻¹ at 2.88 ML (2c,1t,1be) on Pt₃₈. Larger particles also show a rapid change in the binding energy, in contrast to Ir particles. A terrace H* atom in Pt₂₀₁, for example, binds with -32 kJ mol^{-1} at 0.51 ML, which weakens to -1 kJ mol^{-1} at 2.08 ML. The effect of coverage on terrace H* binding energy starts to decrease with increasing particle size from Pt₃₁₄ to Pt₅₈₆, where ΔE changes by less than 4 kJ mol⁻¹ from 0.65 to 1.49 ML in Pt₅₈₆. These findings indicate that local through-surface interactions are stronger in Pt than in Ir.

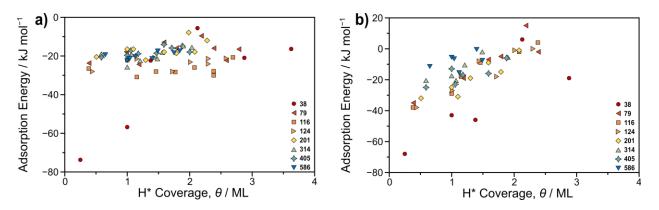


Figure S11. Effect of coverage on the binding energy of a single H* atom centered on (111) terrace in a) Ir and b) Pt particles.

S6. Effect of H^* coverage on M_s - M_s bond distance

Average surface metal-metal bond (M_s-M_s) distance increases with increasing H* coverage in metal clusters, in contrast to single-crystal (111) surfaces (0.2716 and 0.2760 nm for Ir and Pt surfaces, respectively) (Fig. S12). M_s-M_s distance in Ir₃₈, for example, increases gradually from 0.2636 nm in the bare particle to 0.2653 nm at 1 ML, and then more rapidly to 0.2737 nm at 1.88 ML (Fig. S12a). H* coverage affects M_s-M_s distance less as the particle size increases; M_s-M_s distance in the large Ir₅₈₆ particle changes by only 0.0044 nm from 0 to 1.84 ML. Notably, M_s-M_s distance is to that of the (111) surface because (111) terraces represent the majority of the Ir₅₈₆ surface. Average M_s-M_s distance in Pt particles also increases with increasing H* coverage but much more rapidly than in Ir particles at $\theta > 1$ ML (Fig. S12b); M_s-M_s distance in Pt₃₈ changes by 0.0172 nm from 1 to 1.88 ML compared to 0.0101 nm in Ir₃₈.

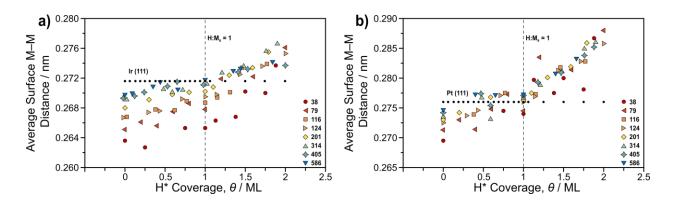


Figure S12. Average surface metal-metal bond distance as a function of H^* coverage on *a*) Ir and *b*) Pt particles.