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Figure S1. Representative image and particle size distribution of 7.1 nm Ir-SiO, as obtained by
transmission electron microscopy. A total of 1,029 clusters were counted to determine drem, the surface-
averaged diameter. The sample contains a broad range of cluster sizes, however, the largest clusters
dominate the value of the surface-averaged diameter.



Table S1. Summary of the synthesis conditions and characterization results for the Ir catalyst.

Ir Temperature (K) Dispersion (%)
<dchem> <dTEM>
TEA:I'®  content . )
Oxidative Reductive (hm @ (hm) ®
(% wt.) H,@  0,® Cco®

Treatment @ Treatment @

10 3.0 1123,12 h 1173,8h 13 15 13 7.1 14.4

(1) Ratio of triethanol amine to HIrCls in aqueous solution used for SiO, impregnation
(2) 21 kPa O, (dry air)

(3) 50 kPa H; (balance He)

(4) H, chemisorption (irreversible at 300 K), assuming H:Ir =1

(5) O, chemisorption (irreversible at 300 K), assuming O:lr =1

(6) CO chemisorption (irreversible at 300 K), assuming CO:Ir = 1

(7) Mean particle diameters, dehem, calculated from denem=C/D, where C is 0.99 for spherical iridium particles and D is the measured dispersion
from irreversible H, uptakes.

(8) Surface-averaged mean Ir particle diameter from TEM analysis using <drem> =2 nidi¥/2nid;?



Details of Density Functional Calculations of Thermochemical Properties

The enthalpy of a given state can be written as the sum of the DFT-derived energy (Eo), zero-
point vibrational enthalpy (ZPVE) and vibrational, translational and rotational enthalpy (Hvib,
Hitrans and Hiot):

H = EO +ZPVE + Hvib + Htrans + Hrot (84)
similarly, the free energy of a state can be written as:
G = E0 +ZPVE +Gvib + Gtrans + Grot (SS)
and entropy can be determined for a state with a known H and G at a given T:
H-G
S=—— S3
T (S3)

For calculations which include a periodic Ir(111) surface (including adsorbed species and
transition states on that surface), there are no translational or rotational degrees of freedom and
DFT-derived vibrational frequencies can be used to determine the ZPVE, Hyix and Gyip Shown in
Eqgns. S6-8.

ZPVE = ¥,;(%v;h) (S6)
. kT
Hyp = 3 (”—) (S7)
1—e kT
Gyip = X (—kT In —) (S8)
1—ek—’;



Gas-phase molecules have translational and rotational degrees of freedom; thus Hirans, Hrot, Gtrans

and Grot must also be computed: *

Hirans = 5/2 kT (S9)
Hyotiinear = kT (S10)
H, ot nontinear = 3/2 kT (S11)

2nMkT3/2
Gorans = —kTIn [( uti V] (S12)
1/2 T3 1/2
Gror = —kT'n [ (e5,2) ] (513)
h2
i = iR (S14)

where |; is the moment of inertia about axes X, y or z and o is the symmetry number of the
molecule, 2 for Hz, 12 for CH4 and 6 for CoHe.

I Statistical Mechanics”, D. A. McQuarrie, 2000, University Science Books, Sausolito, CA.
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Figure S2. Binding energies of H* at different coverages on Ir2o1 model clusters. BEayg indicates
the average of all H* atoms on the surface whereas BEpis indicates the average change in BE

that results from adding the indicated number of H*-atoms to the surface with lower coverage.

Figure S2 shows that the binding energy (BE) of H*-atoms on Irxo1 particles does not
significantly decrease at coverages greater than 1 H*:Irs, indicating that some Irs atoms will have
> 1 H*-atoms at high H2 pressures. For instance, increasing the H*-atom coverage from 122 H*
(1 H*:1rs) to 182 H* (1.5 H*:Irs) by the addition of 60 H* atoms at under-saturated corners and
edges, only decreases the average BE of the 60 added H* atoms (BEpitf) to -31.3 kJ mol™ from
the average BE of the 122 original H*-atoms (-33.6 kJ mol™). Similarly, the addition of 24 H* to
the 182 H*-atom model to generate a model with 206 H* atoms (1.7 H*:Irs), decreases the BEnpist
to -23 kJ mol ™.



2504
234
200
150 -
- 140
5]
g 115
2 2 CHy*
< 100+ +H,
2
1}
§ 65
lt: 50
> 34
S
§ CICH o O
Q 2 + 1/2 H2
x 0
CH,CH;
+2H*
-31
2 CH,
-50-
-65
Reaction Coordinate 2 CH,
> + 2H*
-100-

Figure S3. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in CH3CHs*.
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Figure S4. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in CH3CH:*.
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Figure S5. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CH,CH,*.
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Figure S6. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CH3;CH*.
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Figure S7. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CH,CH*.
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Figure S8. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CH3C*.
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Figure S9. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CHCH*.



358

350

300

250 CH,* + C*
+3H,

200+

1504

1004

Relative Enthalpy, kJ mol”

50
0
-31
2 CH,
-50-
-65

Reaction Coordinate 2 CH,

> +2H*
-100-

Figure S10. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CH,C*.



Mechanism 1) Ethane Hydrogenolysis via *CHC* Activation:
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Figure S11. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CHC*.
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Figure S12. Reaction coordinate diagram for ethane hydrogenolysis via C-C bond rupture in *CC*.



