# **Supporting Information**

# **Comparing Alkene-mediated and Formaldehyde-mediated Diene Formation Routes in Methanol-to-Olefins Catalysis in MFI and CHA**

Lauren Kilburn, Mykela DeLuca, Alexander Hoffman, Shivang Patel, David Hibbitts\*

Department of Chemical Engineering, University of Florida, Gainesville, 32611

\*Corresponding author: hibbitts@che.ufl.edu

# **Table of Contents**

| S1. Details of framework structuresS5<br>Figure S1S5                                             |
|--------------------------------------------------------------------------------------------------|
| Figure S2S6                                                                                      |
| S2. Frequency Calculations for Temperature-Corrected Enthalpies and Entropies                    |
| S3. Derivation of Maximum Rates of Diene Formation Reactions                                     |
| S4. Images of Alkene-mediated Reactions in MFI at each O-siteS12                                 |
| Figure S3S12                                                                                     |
| Figure S4S13                                                                                     |
| Figure S5S13                                                                                     |
| Figure S6S14                                                                                     |
| S5. Images of Alkene-mediated Reactions in CHA at Each O-site                                    |
| Figure S7S14                                                                                     |
| Figure S8                                                                                        |
| Figure S9S15                                                                                     |
| S6. Images of CH <sub>2</sub> O-mediated Reactions in MFI at Each O-siteS16                      |
| Figure S10S16                                                                                    |
| S7. Images of CH <sub>2</sub> O-mediated Reactions in CHA at Each O-site                         |
| Figure S11S16                                                                                    |
| S8. Energies of Hydride Transfer Transition States with C <sub>1</sub> -C <sub>4</sub> AlkylsS17 |
| Table S1S17                                                                                      |
| Table S2S17                                                                                      |
| S9. Images of Hydride Transfer Transition States with C <sub>1</sub> -C <sub>4</sub> AlkylsS18   |
| Figure S12S18                                                                                    |
| Figure S13S18                                                                                    |
| Figure S14S19                                                                                    |
| Figure S15S19                                                                                    |
| S10. Images of Reaction Coordinate Diagram States                                                |

| Figure S16                                                                                        |
|---------------------------------------------------------------------------------------------------|
| Figure S17S20                                                                                     |
| Figure S18                                                                                        |
| Figure S19                                                                                        |
| Figure S20S22                                                                                     |
| Figure S21                                                                                        |
| Figure S22                                                                                        |
| Figure S23                                                                                        |
| Figure S24S25                                                                                     |
| Figure S25S26                                                                                     |
| Figure S26S26                                                                                     |
| Figure S27                                                                                        |
| Figure S28                                                                                        |
| Figure S29S28                                                                                     |
| Figure S30S28                                                                                     |
| Figure S31                                                                                        |
| Figure S32S30                                                                                     |
| Figure S33                                                                                        |
| Figure S34S32                                                                                     |
| Figure S35S33                                                                                     |
| Figure S36S33                                                                                     |
| Figure S37                                                                                        |
| S11. Comparison of Alkene-mediated and CH <sub>2</sub> O-mediated Pathway Barriers in CHA and MFI |
| Table S3S35                                                                                       |
| S12. Discussion of Alkene-mediated Pathway Structures in CHA                                      |
| S14. Enthalpy Reaction Coordinate Diagrams                                                        |

| Figure S38                                                                                   | S37        |
|----------------------------------------------------------------------------------------------|------------|
| Figure S39                                                                                   | S38        |
| Figure S40                                                                                   | S38        |
| Figure S41                                                                                   | S39        |
| S15. Comparison of Hydride Transfer Between CH <sub>3</sub> OH and Tert-butyl in MFI and CHA | S39        |
| Figure S42                                                                                   | S39        |
| Figure S43                                                                                   | S40        |
| S16. MFI O-site Indices and Void Environment<br>Table S4                                     | S41<br>S41 |
| S17. Maximum Rate Analysis and Relative Rates<br>Figure S44                                  | S39<br>S39 |
| Figure S45                                                                                   | S39        |
| Figure S46                                                                                   | S39        |
| Figure S47                                                                                   | S39        |

S1. Details of Framework Structures



Figure S1. a) Straight and b) sinusoidal view of HZSM-5 (MFI) structure.



Figure S2. a) Front and b) back view of H-SSZ-13 (CHA) structure.

#### S2. Frequency Calculations for Temperature-Corrected Enthalpies and Entropies

Frequency calculations are normal mode analyses and were performed on all optimization and Dimer calculations. Frequency calculations were used to determine zero-point vibrational energy (ZPVE), vibrational enthalpy ( $H_{vib}$ ), and vibrational free energy ( $G_{vib}$ ) for adsorbed species to calculate enthalpy (H):

$$H = E_0 + ZPVE + H_{vib}$$
(S1)

and free energy (G):

$$G = E_0 + ZPVE + G_{vib}$$
(S2)

Translational and rotational enthalpies and free energies are also calculated for gas phase species to compute gas phase enthalpy:

$$H = E_0 + ZPVE + H_{vib} + H_{rot} + H_{trans}$$
(S3)

and gas phase free energy:

$$G = E_0 + ZPVE + H_{vib} + H_{rot} + H_{trans}$$
(S4)

### S3. Derivation of Maximum Rates of Diene Formation Reactions

Maximum rate analysis is employed to compare the rate of reactions with different pressure dependencies and to determine the overall rate of the alkene-mediated and CH<sub>2</sub>O-mediated pathways. Rates are calculated for each step of the pathway using transition state theory by asserting that step as rate determining and assuming all prior reactions are quasi-equilibrated. All adsorptions are assumed to be quasi-equilibrated, and all subsequent steps are considered kinetically irrelevant.

Potential most abundant surface intermediates (MASI) considered for alkene-mediated rates are [\*],  $C_2H_4$ \*,  $C_4H_8$ \*,  $C_4H_8$ \*-- $C_2H_4$ \*,  $C_2H_5$ -Z, and  $C_4H_8$ -- $C_2H_5$ -Z. The site balance is given as:

$$\frac{[*]}{[L]} = (1 + K_{C_2H_4}(C_2H_4) + K_{C_4H_8}(C_4H_8) + K_{C_2H_4}K_{C_4H_8-C_2H_4}(C_4H_8)(C_2H_4) + K_{S1}(C_2H_4) + K_{C_4H_8-C_2H_5-Z}K_{S1}(C_4H_8)(C_2H_4)$$
(S5)

where  $K_{C_xH_y}$  represents the rate constant of equilibrated adsorption, and  $K_{S1}$  represents the rate constant of equilibrated C<sub>2</sub>H<sub>5</sub>–Z formation, and species in parentheses represent partial pressures. The term [\*] represents all empty sites and the term [L] represents all possible sites.

The first step of the sequential mechanism for the alkene-mediated route,  $C_2H_5$ –Z formation, consists of two steps:

$$C_2H_4(g) + * \rightleftharpoons C_2H_4^* \qquad K_{C_2H_4} \tag{S6}$$

$$C_2 H_4^* \to C_2 H_5 - Z \qquad \qquad k_{S1} \qquad (S7)$$

The rate of  $C_2H_5$ –Z formation is given by:

$$r = k_{S1} [C_2 H_4^{*}] \tag{S8}$$

The rate described in Eq. 8 can be written using partial pressures by combining Eqs. S5 and S6.

$$r = K_{C_2H_4} k_{S1} (C_2H_4)[*]$$
(S9)

Normalizing the rate by the number of sites [L], yields this generalized form of the rate equation:

$$\frac{r}{L} = K_{C_2H_4} k_{S1} (C_2H_4) \left(\frac{[*]}{L}\right)$$
(S10)

The first step can also occur with spectating C<sub>4</sub>H<sub>8</sub> and consists of three steps:

$$C_2H_4(g) + * \rightleftharpoons C_2H_4^* \qquad \qquad K_{C_2H_4} \qquad (S11)$$

$$C_4H_8(g) + C_2H_4^* \rightleftharpoons C_4H_8 - C_2H_4^* \qquad K_{C_4H_8 - C_2H_4}$$
 (S12)

$$C_4 H_8 - C_2 H_4^* \to C_4 H_8 - C_2 H_5 - Z \qquad k_{S1S}$$
(S13)

The rate of  $C_2H_5$ –Z formation with spectating  $C_4H_8$  is given by:

$$r = k_{S1S} [C_4 H_8 - C_2 H_4^*]$$
(S14)

The rate equation (Eq. S14) can be combined with Eqs. S5, S11, and S12 to yield:

$$r = K_{C_2H_4}K_{C_4H_8-C_2H_4}k_{S1S}(C_2H_4)(C_4H_8)[*]$$
(S15)

And normalized by the number of sites [L]:

$$\frac{r}{L} = K_{C_2H_4}K_{C_4H_8-C_2H_4}k_{S1\,S}(C_2H_4)(C_4H_8)\left(\frac{[*]}{[L]}\right)$$
(S16)

The second step of the sequential alkene-mediated route, the  $C_2H_5$ -Z hydride transfer, requires four steps. Assuming that  $C_4H_8$  adsorption occurs after  $C_2H_5$ -Z formation:

$$C_2H_4(g) + * \rightleftharpoons C_2H_4^* \qquad K_{C_2H_4} \qquad (S17)$$

$$C_2 H_4^* \rightleftharpoons C_2 H_5 - Z \qquad \qquad K_{S1} \qquad (S18)$$

$$C_4 H_8(g) + C_2 H_5 - Z \rightleftharpoons C_4 H_8 - C_2 H_5 - Z \qquad K_{C_4 H_8 - C_2 H_5 - Z}$$
(S19)

$$C_4 H_8 - C_2 H_5 - Z \to C_2 H_6 - C_4 H_6^* \qquad k_{S2}$$
 (S20)

The rate of C<sub>2</sub>H<sub>5</sub>–Z hydride transfer is given by:

$$r = k_{S2} [C_4 H_8 - C_2 H_5 - Z] \tag{S21}$$

Combining Eq. S21 with Eqs. S5, S17, S18, and S19 yields:

$$r = K_{C_2H_4}K_{S1}K_{C_4H_8-C_2H_5-Z}k_{S2}(C_2H_4)(C_4H_8)[*]$$
(S22)

And normalized by the number of sites [L]:

$$\frac{r}{L} = K_{C_2H_4}K_{C_4H_8-C_2H_5-Z}k_{S2}(C_2H_4)(C_4H_8)\left(\frac{[*]}{[L]}\right)$$
(S23)

The concerted mechanism of the alkene-mediated pathway consists of three steps:

$$C_2H_4(g) + * \rightleftharpoons C_2H_4^* \qquad (S24)$$

$$C_4 H_8(g) + C_2 H_4^* \rightleftharpoons C_4 H_8 - C_2 H_4^* \qquad K_{C_4 H_8 - C_2 H_4}$$
 (S25)

$$C_4 H_8 - C_2 H_4^* \to C_2 H_6 - C_4 H_6^* \qquad k_C$$
 (S26)

The rate of concerted hydride transfer is given by:

$$r = k_c [C_4 H_8 - C_2 H_4^*] \tag{S27}$$

Combining Eq. S27 with Eqs. S5, S24, and S25 yields:

$$r = K_{C_2H_4}K_{C_4H_8-C_2H_4}k_C(C_2H_4)(C_4H_8)[*]$$
(S28)

And normalized by the number of sites [L]:

$$\frac{r}{L} = K_{C_2H_4}K_{C_4H_8-C_2H_4}k_C(C_2H_4)(C_4H_8)\left(\frac{[*]}{[L]}\right)$$
(S29)

Potential most abundant surface intermediates (MASI) considered for the  $CH_2O$ -mediated pathway considered are [\*],  $CH_3OH^*$ ,  $CH_3$ –Z, and  $C_4H_8O^*$ . The site balance is given by:

$$\frac{[*]}{[L]} = (1 + K_{CH_3OH}(CH_3OH) + K_{CH_3OH}K_{S1}(CH_3OH)(H_2O)^{-1} + K_{CH_3OH}K_{S1}K_{S2}K_3)(CH_3OH)^2(H_2O)^{-1}(C_3H_6)$$
(S30)

where  $K_{S1}$ ,  $K_{S2}$ , and  $K_3$ , represent rate constants for quasi-equilibrated  $CH_3$ –Z formation,  $CH_2OH$ –Z formation, and butenol formation.

The first step of the sequential mechanism for the CH<sub>2</sub>O-mediated pathway, CH<sub>3</sub>–Z formation, involves two steps:

$$CH_3OH(g) + * \rightleftharpoons CH_3OH^*$$
  $K_{CH_3OH}$  (S31)

$$CH_3OH^* \to H_2O - CH_3 - Z \qquad \qquad k_{CH_3OH} \qquad (S32)$$

The rate is given by:

$$r = k_{S1}[CH_3OH^*]$$
(S33)

Combining Eq. S33 with Eqs. S5 and S3, and normalizing by the number of sites [L] yields:

$$\frac{r}{L} = K_{CH_3OH} k_{S1} (CH_3OH) \frac{[*]}{[L]}$$
(S34)

The second step of the sequential mechanism for the CH<sub>2</sub>O-mediated pathway, CH<sub>2</sub>OH–Z formation, involves five steps:

$$CH_3OH(g) + * \rightleftharpoons CH_3OH^*$$
  $K_{CH_3OH}$  (S35)

$$CH_3OH^* \rightleftharpoons H_2O - CH_3 - Z \qquad K_{S1} \qquad (S36)$$

$$H_2 O - C H_3 - Z \rightleftharpoons C H_3 - Z + H_2 O(g)$$
  $\frac{1}{K_{H_2 O - C H_3 - Z}}$  (S37)

$$CH_3OH(g) + CH_3 - Z \rightleftharpoons CH_3OH - CH_3 - Z \qquad K_{CH_3OH} \qquad (S38)$$

$$CH_3OH - CH_3 - Z \to CH_4 - CH_2OH - Z \qquad k_{S2} \qquad (S39)$$

The rate is given by:

$$r = k_{S2}[CH_3OH - CH_3 - Z]$$
(S40)

Combining Eq. S40 with Eqs. S35, S36, S37 and S38, and normalizing by the number of sites [L] yields:

$$\frac{r}{L} = \frac{K_{CH_3OH}^2 K_{S1} k_{S2}}{K_{H_2O-CH_3-Z}} (CH_3OH)^2 (H_2O)^{-1} \frac{[*]}{[L]}$$
(S41)

The third step of the sequential mechanism for the CH<sub>2</sub>O-mediated pathway, butenol formation, involves eight steps:

$$CH_3OH(g) + * \rightleftharpoons CH_3OH^*$$
  $K_{CH_3OH}$  (S42)

$$CH_3OH^* \rightleftharpoons H_2O - CH_3 - Z \qquad K_{S1} \qquad (S43)$$

$$H_2 O - C H_3 - Z \rightleftharpoons C H_3 - Z + H_2 O(g)$$
  $\frac{1}{K_{H_2 O - C H_3 - Z}}$  (S44)

$$CH_3OH(g) + CH_3 - Z \rightleftharpoons CH_3OH - CH_3 - Z \qquad K_{CH_3OH} \qquad (S45)$$

$$CH_3OH - CH_3 - Z \rightleftharpoons CH_4 - CH_2OH - Z \qquad K_{S2} \qquad (S46)$$

$$CH_4 - CH_2OH - Z \rightleftharpoons CH_2OH - Z + CH_4(g) \qquad \frac{1}{K_{CH_4 - CH_2OH - Z}}$$
 (S47)

$$C_3H_6(g) + CH_2OH - Z \rightleftharpoons C_3H_6 - CH_2OH - Z \qquad K_{C_3H_6 - CH_2OH - Z}$$
(S48)

$$C_3H_6 - CH_2OH - Z \rightarrow C_4H_8O^* \qquad \qquad k_3 \qquad (S49)$$

The rate is given by:

$$r = k_3 [C_3 H_6 - C H_2 O H - Z] \tag{S50}$$

Combining Eq. S50 with Eqs. S42, S43, S44, S45, S46, S47, and S48 and normalizing by the number of sites [L] yields:

$$\frac{r}{L} = \frac{K_{CH_3OH}^2 K_{S1} K_{S2} k_{S3}}{K_{H_2O-CH_3-Z} K_{CH_4-CH_2OH-Z}} (CH_3OH)^2 (H_2O)^{-1} (CH_4)^{-1} (C_3H_6) \frac{[*]}{[L]}$$
(S51)

The fourth step of the sequential mechanism for the  $CH_2O$ -mediated pathway, butenol dehydration, involves the same eight steps as butenol formation; however, butenol formation is assumed to be quasi-equilibrated and represented by  $K_3$ . The additional step, butenol dehydration, is given by Eq. S52:

$$C_4 H_8 0^* \to H_2 0 - C_4 H_6^* \qquad k_4 \qquad (S52)$$

The rate is given by:

$$r = k_4 [C_4 H_8 0^*] \tag{S53}$$

Combining Eq. S52 with Eqs. S42, S43, S44, S45, S46, S47, S48, and S49 and normalizing by the number of sites [L] yields:

$$\frac{r}{L} = \frac{K_{CH_3OH}^2 K_{S1} K_{S2} K_{S3} k_{S4}}{K_{H_2O-CH_3-Z} K_{CH_4-CH_2OH-Z}} (CH_3OH)^2 (H_2O)^{-1} (CH_4)^{-1} (C_3H_6) \frac{[*]}{[L]}$$
(S54)

The concerted CH<sub>2</sub>O formation step involves three steps:

$$CH_3OH(g) + * \rightleftharpoons CH_3OH^*$$
  $K_{CH_3OH}$  (S55)

$$CH_3OH(g) + CH_3OH^* \rightleftharpoons 2CH_3OH^* \qquad K_{2CH_3OH} \qquad (S56)$$

$$2CH_3OH^* \to CH_4 - H_2O - CH_2O \qquad k_C \qquad (S57)$$

The rate is given by:

$$r = k_C [2CH_3 OH^*] \tag{S58}$$

Combining Eq. S58 with Eqs. S5, S55, S56, and S57 and normalizing by the number of sites [L] yields:

$$r = K_{CH_3OH} K_{2CH_3OH} k_C (CH_3OH)^2$$
(S59)

CH<sub>2</sub>O protonation involves five steps:

$$CH_3OH(g) + * \rightleftharpoons CH_3OH^*$$
  $K_{CH_3OH}$  (S60)

$$CH_3OH(g) + CH_3OH^* \rightleftharpoons 2CH_3OH^* \qquad K_{2CH_3OH}$$
(S61)

$$2CH_3OH^* \rightleftharpoons CH_4 - H_2O - CH_2O \qquad K_C \qquad (S62)$$

$$CH_4 - H_2 O - CH_2 O \rightleftharpoons CH_2 O^* + CH_4(g) + H_2 O(g) = \frac{1}{K_{H_2 O} K_{CH_4}}$$
 (S63)

$$CH_2O^* \to CH_2OH - Z \qquad k_5 \qquad (S64)$$

The rate is given by:

$$r = k_5 [CH_2 0^*] (S65)$$

Combining Eq. S65 with Eqs. S5, S60, S61, S62, and S63 and normalizing by the number of sites [L] yields:

$$r = \frac{K_{CH_3OH}K_{2CH_3OH}K_C k_5}{K_{H_2O}K_{CH_4}} (CH_3OH)^2 (H_2O)^{-1} (CH_4)^{-1}$$
(S66)

## S4. Images of Alkene-mediated Reactions in MFI at each O-site



**Figure S3.** C<sub>2</sub>H<sub>5</sub>–Z formation transition state at a) O14-O25, b) O16-O14, and c) O16-O25. Free energies ( $\Delta$ G, kJ mol<sup>-1</sup>) are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta$ G of 0 kJ mol<sup>-1</sup> and is used for further analysis.



**Figure S4.** C<sub>2</sub>H<sub>5</sub>–Z formation with spectating C<sub>4</sub>H<sub>8</sub> transition state at a) O14-O25, b) O16-O14, and c) O16-O25. Free energies ( $\Delta$ G, kJ mol<sup>-1</sup>) are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta$ G of 0 kJ mol<sup>-1</sup> and is used for further analysis.



**Figure S5.**  $C_2H_5$ –Z hydride transfer transition state at a) O14, b) O16, and c) O25. Free energies ( $\Delta G$ , kJ mol<sup>-1</sup>) are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta G$  of 0 kJ mol<sup>-1</sup> and is used for further analysis.



**Figure S6.** Concerted hydride transfer transition state at a) O14, b) O16, and c) O25. Free energies  $(\Delta G, kJ \text{ mol}^{-1})$  are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta G$  of 0 kJ mol<sup>-1</sup> and is used for further analysis.

S5. Images of Alkene-mediated Reactions in CHA at Each O-site



**Figure S7.**  $C_2H_5$ –Z formation transition state at a) O1, b) O2, c) O3, and d) O4. Free energies ( $\Delta G$ , kJ mol<sup>-1</sup>) are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta G$  of 0 kJ mol<sup>-1</sup> and is used for further analysis.



**Figure S8.** C<sub>2</sub>H<sub>5</sub>–Z hydride transfer transition state at a) O1, b) O3, and c) O4. Free energies ( $\Delta$ G, kJ mol<sup>-1</sup>) are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta$ G of 0 kJ mol<sup>-1</sup> and is used for further analysis.



**Figure S9.** Concerted hydride transfer transition state at a) O1, b) O2, and c) O3. Free energies  $(\Delta G, kJ \text{ mol}^{-1})$  are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta G$  of 0 kJ mol<sup>-1</sup> and is used for further analysis.

## S6. Images of CH<sub>2</sub>O-mediated Reactions in MFI at Each O-site



**Figure S10.** CH<sub>2</sub>OH–Z formation transition state at a) O14, b) O16, and c) O25. Free energies  $(\Delta G, kJ \text{ mol}^{-1})$  are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta G$  of 0 kJ mol<sup>-1</sup> and is used for further analysis.

S7. Images of CH<sub>2</sub>O-mediated Reactions in CHA at Each O-site



**Figure S11.** CH<sub>2</sub>OH–Z formation transition state at a) O1, b) O2, c) O3, and d) O4. Free energies ( $\Delta$ G, kJ mol<sup>-1</sup>) are reported at 433 K and are relative to the transition state at the most favorable O-site. The most favorable transition state has a  $\Delta$ G of 0 kJ mol<sup>-1</sup> and is used for further analysis

| <b>Table S1.</b> $\Delta\Delta$ Ga <sup><math>\neq</math></sup> (kJ mol <sup>-1</sup> ) values for each surface-bound alkyl in MFI and CHA. Values are reported at 623 K |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Surface-bound Alkyl                                                                                                                                                      | $\Delta \Delta (kJ) = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2} \sum_{k=$ | Ga≠<br>ol <sup>-1</sup> |  |  |
| ·                                                                                                                                                                        | MFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | СНА                     |  |  |
| Methyl                                                                                                                                                                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                      |  |  |
| Ethyl                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                      |  |  |
| Propyl                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                       |  |  |
| Sec-butyl                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                      |  |  |
| Tert-butyl                                                                                                                                                               | -101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -89                     |  |  |

| <i>S8</i> . | Energies | of Hydri | de Transfei | r Transition | States with | $C_1$ - $C_4$ Alkyls |
|-------------|----------|----------|-------------|--------------|-------------|----------------------|
|             |          |          |             |              |             |                      |

**Table S2.**  $\Delta Ga \neq (kJ \text{ mol}^{-1})$  for hydride transfers between each surface-bound alkyl and C<sub>4</sub>H<sub>8</sub> or CH<sub>3</sub>OH. Values are reported at 623 K.

| Hydride Transfer Transition State | Δ(<br>kJ n | Ga≠<br>nol <sup>-1</sup> |
|-----------------------------------|------------|--------------------------|
|                                   | MFI        | СНА                      |
| [MethylCH₃OH]≉                    | 156        | 160                      |
| [EthylCH₃OH]≉                     | 147        | 149                      |
| [PropylCH <sub>3</sub> OH]≉       | 104        | 108                      |
| [Sec-butylCH₃OH]≉                 | 100        | 113                      |
| [Tert-butylCH₃OH]≉                | 55         | 104                      |
| [MethylC₄H <sub>8</sub> ]≉        | 137        | 143                      |
| [EthylC₄H8]≉                      | 134        | 115                      |
| [PropylC₄H <sub>8</sub> ]≉        | 83         | 106                      |
| [Sec-butylC₄H <sub>8</sub> ]≉     | 98         | 96                       |
| [Tert-butylC₄H <sub>8</sub> ]≉    | 156        | 192                      |



**Figure S12.** Transition state of hydride transfer between CH<sub>3</sub>OH and a) methyl, b) ethyl, c) propyl, d) sec-butyl, and e) tert-butyl in MFI.



**Figure S13.** Transition state of hydride transfer between CH<sub>3</sub>OH and a) methyl, b) ethyl, c) propyl, d) sec-butyl, and e) tert-butyl in CHA.



**Figure S14.** Transition state of hydride transfer between  $C_4H_8$  and a) methyl, b) ethyl, c) propyl, d) sec-butyl, and e) tert-butyl in MFI.



**Figure S15.** Transition state of hydride transfer between  $C_4H_8$  and a) methyl, b) ethyl, c) propyl, d) sec-butyl, and e) tert-butyl in CHA.

S10. Images of Reaction Coordinate Diagram States



**Figure S16.** C<sub>2</sub>H<sub>5</sub>–Z formation a) reactant, b) transition state, and c) product in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S17.** C<sub>2</sub>H<sub>5</sub>–Z formation with spectating C<sub>4</sub>H<sub>8</sub> a) reactant, b) transition state, and c) product in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S18.** C<sub>2</sub>H<sub>5</sub>–Z hydride transfer a) reactant, b) transition state, and c) product in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S19.** Concerted hydride transfer a) reactant, b) transition state, and c) product in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S20.** C<sub>2</sub>H<sub>5</sub>–Z formation a) reactant, b) transition state, and c) product in CHA. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S21.** C<sub>2</sub>H<sub>5</sub>–Z formation with spectating C<sub>4</sub>H<sub>8</sub> a) reactant, b) transition state, and c) product in CHA. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are in italics.



**Figure S22.** C<sub>2</sub>H<sub>5</sub>–Z hydride transfer a) reactant, b) transition state, and c) product in CHA. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S23.** Concerted hydride transfer a) reactant, b) transition state, and c) product in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S24.** CH<sub>3</sub>–Z formation a) reactant, b) transition state, and c) product in MFI. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S25.** CH<sub>2</sub>OH–Z formation a) reactant, b) transition state, and c) product in MFI. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S26.** Concerted CH<sub>2</sub>O formation a) reactant, b) transition state, and c) product in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S27.** CH<sub>2</sub>O protonation a) reactant, b) transition state, and c) product in MFI. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S28.** Butenol formation a) reactant, b) transition state, and c) product in MFI. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S29.** Butenol dehydration a) reactant, b) transition state, and c) product in MFI. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S30.** CH<sub>3</sub>–Z formation a) reactant, b) transition state, and c) product in CHA. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S31.** CH<sub>2</sub>OH–Z formation a) reactant, b) transition state, and c) product in CHA. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S32.** Concerted CH<sub>2</sub>O formation a) reactant, b) transition state, and c) product in CHA. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers ( $\Delta$ E<sub>act</sub>) and overall barriers ( $\Delta$ E<sub>rxn</sub>) are listed in italics.



**Figure S33.** CH<sub>2</sub>O protonation a) reactant, b) transition state, and c) product in CHA. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S34.** Butenol formation a) reactant, b) transition state, and c) product in CHA. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S35.** Butenol dehydration a) reactant, b) transition state, and c) product in CHA. Enthalpy  $(\Delta H)$ , entropy  $(\Delta S)$ , and free energy  $(\Delta G)$  values are reported at 433 K and relative to a protonated zeolite. Intrinsic barriers  $(\Delta E_{act})$  and overall barriers  $(\Delta E_{rxn})$  are listed in italics.



**Figure S36.** Additional states a) H–Z, b) CH<sub>3</sub>–Z, and c) C<sub>4</sub>H<sub>6</sub>--H–Z in MFI. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite.



**Figure S37.** Additional states a) H–Z, b) CH<sub>3</sub>–Z, and c) C<sub>4</sub>H<sub>6</sub>--H–Z in CHA. Enthalpy ( $\Delta$ H), entropy ( $\Delta$ S), and free energy ( $\Delta$ G) values are reported at 433 K and relative to a protonated zeolite.

| S11. Comparison of Alkene-mediated and G | CH <sub>2</sub> O-mediated Pathway | Barriers in CHA and MFI. |
|------------------------------------------|------------------------------------|--------------------------|
|                                          |                                    |                          |

| <b>Table S3.</b> Intrinsic ( $\Delta G_{act}$ ) and effective ( $\Delta G_{act}$ ) free energy barriers for all reactions in the |
|----------------------------------------------------------------------------------------------------------------------------------|
| alkene-mediated and CH2O-mediated pathways at 433 K. Effective barriers are relative to the                                      |
| _protonated framework.                                                                                                           |

|                                                                                                                                      | Δ                             | Gact | ΔG≉           |     |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|---------------|-----|
| Reaction                                                                                                                             | <b>Reaction</b> $kJ mol^{-1}$ |      | $kJ mol^{-1}$ |     |
|                                                                                                                                      | MFI                           | CHA  | MFI           | СНА |
| $C_{2}H_{5}-Z \text{ formation}$ $C_{2}H_{4}^{*} \rightarrow C_{2}H_{5}-Z$                                                           | 83                            | 86   | 88            | 83  |
| C <sub>2</sub> H <sub>5</sub> –Z formation with C <sub>4</sub> H <sub>8</sub><br>$C_4H_8 - C_2H_4^* \rightarrow C_4H_8 - C_2H_5 - Z$ | 83                            | 84   | 125           | 97  |
| C <sub>2</sub> H <sub>5</sub> –Z hydride transfer<br>$C_4H_8 - C_2H_5 - Z \rightarrow C_2H_6 - C_4H_6^*$                             | 61                            | 78   | 88            | 75  |
| Concerted hydride transfer<br>$C_4H_8 - C_2H_4^* \rightarrow C_2H_6 - C_4H_6^*$                                                      | 55                            | 74   | 98            | 87  |
| $CH_3 - Z \text{ formation}$ $CH_3 OH^* \rightleftharpoons H_2 O - CH_3 - Z$                                                         | 129                           | 130  | 109           | 86  |
| CH <sub>2</sub> OH–Z formation<br>$CH_3OH-CH_3-Z \rightarrow CH_4-CH_2OH-Z$                                                          | 102                           | 101  | 127           | 117 |
| Concerted CH <sub>2</sub> O formation<br>$2CH_3OH^* \rightarrow CH_4 - H_2O - CH_2O$                                                 | 161                           | 143  | 145           | 114 |
| CH <sub>2</sub> O protonation<br>$CH_2O^* \rightarrow CH_2OH - Z$                                                                    | 69                            | 64   | -1            | -15 |
| Butenol formation<br>$C_3H_6 - CH_2OH - Z \rightarrow C_4H_8O^*$                                                                     | 32                            | 21   | -5            | -31 |
| Dehydration<br>$C_4 H_8 O^* \rightarrow H_2 O - C_4 H_6^*$                                                                           | 79                            | 122  | -51           | -28 |

## S12. Discussion of Alkene-mediated Pathway Structures in CHA

The alkene-mediated pathway was investigated in the CHA framework via the same sequential (Eq. 2–3) and concerted mechanisms as in MFI (Eq. 1). The formation of  $C_2H_5$ –Z without co-adsorbed  $C_4H_8$  occurs between O3 (protonation) and O1 (C–O bond formation) with a

 $\Delta G_{act}$  of 86 kJ mol<sup>-1</sup> and intrinsic barriers do not decrease with spectating C<sub>4</sub>H<sub>8</sub> (Fig. 3b). The coadsorption of C<sub>4</sub>H<sub>8</sub> does not significantly alter the transition state structure or the intrinsic barrier (84 kJ mol<sup>-1</sup>) for C<sub>2</sub>H<sub>5</sub>–Z formation, similar to the observations in MFI.

The transition state for hydride transfer between C<sub>4</sub>H<sub>8</sub> and C<sub>2</sub>H<sub>5</sub>–Z, the second step in the sequential mechanism, occurs with a  $\Delta G_{act}$  of 78 kJ mol<sup>-1</sup> and the best structure is at O3 with C<sub>4</sub>H<sub>8</sub> positioned directly above the carbocation (Fig. 3c). Similar to MFI, and as described in previous literature,(1–3) the transition state primarily involves cleavage of the C–O bond and formation of the hydride transfer complex. In CHA, the transition state forms at O3 in the large cage adjacent to the 8-MR. The transition state at O4, which has an energy 24 kJ mol<sup>-1</sup> higher, also forms preferentially within an 8-MR, however C<sub>4</sub>H<sub>8</sub> is rotated away from the C<sub>2</sub>H<sub>5</sub><sup>+</sup> intermediate (Fig. S8). At O1, which is not located in an 8-MR, the transition state has an energy 60 kJ mol<sup>-1</sup> higher (Fig. S8).

The concerted hydride transfer transition state is optimally protonated from O1 and located within the stabilizing 8-MR (Fig. 5d). Just as in MFI, where the  $C_2H_5^+$  intermediate is stabilized by a second oxygen of the conjugate base, the transition state interacts with the negatively charged O3. The transition state at O1 is 7 kJ mol<sup>-1</sup> higher in energy while the transition state at O3 has a  $\Delta G_{act}$  18 kJ mol<sup>-1</sup> higher despite also being located in the 8-MR ring (Fig. S9)—demonstrating the necessity of testing multiple O-sites and configurations for each of these transition states.

### S13. Discussion of CH<sub>2</sub>O-mediated Structures in CHA

The formaldehyde mediated pathway was investigated in CHA, with the same sequential mechanism (Eqs. 5–6) and concerted mechanism (Eq. 7) as in MFI (Section 3.3). The dehydration of CH<sub>3</sub>OH to form CH<sub>3</sub>–Z, the first step of the sequential mechanism, has been computationally studied before using the PBE-D3 functional and found to occur with a  $\Delta G_{act}$  of 171 kJ mol<sup>-1</sup> at 673 K.(4) The most favorable transition state forms at O3 (Fig. 7a) with a  $\Delta G_{act}$  of 130 kJ mol<sup>-1</sup>, which is significantly lower than the previously reported value. The transition state is stabilized by dispersive interactions with the 8-MR and hydrogen bonding between H<sub>2</sub>O and two framework oxygens (190 and 194 pm, Fig. 8a).

The formation of CH<sub>2</sub>OH–Z from the reaction of CH<sub>3</sub>OH with CH<sub>3</sub>–Z preferentially forms at O4 (Fig. 8b) with a  $\Delta G_{act}$  of 101 kJ mol<sup>-1</sup> (nearly identical to that of MFI,  $\Delta G_{act}$  102 kJ mol<sup>-1</sup>). The complex is also positioned adjacent to the 8-MR, to maximize dispersive forces, and hydrogen bonding between CH<sub>3</sub>OH and a framework oxygen (185 pm, Fig. 8b) confers additional stability. The transition state at O1 experiences weaker framework interactions and has an energy 6 kJ mol<sup>-1</sup> higher (Fig. S11), whereas the most favorable configuration at O2 has weaker hydrogen bonding (245 pm, Fig. S11) and an energy 7 kJ mol<sup>-1</sup> higher. The concerted mechanism involves reacting two CH<sub>3</sub>OH molecules simultaneously to form CH<sub>2</sub>O. The transition state has a higher  $\Delta G_{act}$  (143 kJ mol<sup>-1</sup>) compared to the hydride transfer between CH<sub>3</sub>OH with CH<sub>3</sub>–Z (102 kJ mol<sup>-1</sup>), despite the additional capacity for hydrogen bonding (184, 205, and 174 pm, Fig. 8c). The geometry of the concerted transition state is different than that of the sequential transition state and the CH<sub>3</sub><sup>+</sup> resides in the large cage of CHA where dispersive forces are weaker. As examined in MFI, the interconversion between CH<sub>2</sub>OH–Z to form CH<sub>2</sub>O+H–Z is relatively facile and occurs most favorably at O1 with a  $\Delta G_{act}$  of 64 kJ mol<sup>-1</sup> (Fig. 8d). Notably, CH<sub>2</sub>O+H–Z has an energy 55 kJ mol<sup>-1</sup> lower than CH<sub>2</sub>OH–Z (Fig. 9), so formaldehyde most likely exists in the zeolite as CH<sub>2</sub>O instead of a surface-bound species.

The reaction between CH<sub>2</sub>OH–Z and propene to form butene-1-ol occurs with a  $\Delta G_{act}$  of 21 kJ mol<sup>-1</sup> at O3, where it experiences maximum stabilizing interactions within an 8-MR (Fig. 8e). The subsequent dehydration of butene-1-ol to form butadiene is most favorable at O3 and has a  $\Delta G_{act}$  of 122 kJ mol<sup>-1</sup> (Fig. 8f).

S14. Enthalpy Reaction Coordinate Diagrams



**Figure S38.** Reaction coordinate diagram of the sequential and concerted pathways for the alkenemediated route in MFI. Enthalpies (kJ mol<sup>-1</sup>, 433 K) relative to a bare acid site (proton) and stoichiometric amounts of gas-phase C<sub>2</sub>H<sub>4</sub> and C<sub>4</sub>H<sub>8</sub>. Intrinsic free energy barriers are included in italics.



**Figure S39.** Reaction coordinate diagram of the sequential and concerted pathways for the alkenemediated route in CHA. Enthalpies (kJ mol<sup>-1</sup>, 433 K) relative to a bare acid site (proton) and stoichiometric amounts of gas-phase  $C_2H_4$  and  $C_4H_8$ . Intrinsic free energy barriers are included in italics.



**Figure S40.** Reaction coordinate diagram of the sequential and concerted pathways for the  $CH_2O$ mediated route in MFI. Enthalpies (kJ mol<sup>-1</sup>, 433 K) relative to a bare acid site (proton) and stoichiometric amounts of gas-phase  $CH_3OH$  and  $C_3H_6$ . Intrinsic free energy barriers are included in italics.



**Figure S41.** Reaction coordinate diagram of the sequential and concerted pathways for the  $CH_2O$ mediated route in CHA. Enthalpies (kJ mol<sup>-1</sup>, 433 K) relative to a bare acid site (proton) and stoichiometric amounts of gas-phase  $CH_3OH$  and  $C_3H_6$ . Intrinsic free energy barriers are included in italics.

S15. Comparison of Hydride Transfer Between CH<sub>3</sub>OH and Tert-butyl in MFI and CHA



**Figure S42.** Transition state of the hydride transfer between tert-butyl–Z and  $CH_3OH$  in a) MFI and b) CHA. Distance (Å) between the tertiary tert-butyl carbon and the three closest framework atoms are labeled.



**Figure S43.** Number of framework atoms (Si, O, or Al) versus distance (Å) from the tertiary carbon atom of tert-butyl in the transition state of the hydride transfer with  $CH_3OH$  in MFI (blue) and CHA (red).

### S16. MFI O-site Indices and Void Environments

| 0_atom                 |                                      | O-ato        | om           |              | T-at  | oms   |
|------------------------|--------------------------------------|--------------|--------------|--------------|-------|-------|
| 0-atom                 | v                                    | oid envi     | ronment      |              | bound | to O- |
| This work <sup>a</sup> | van Koningsveld et. al. <sup>b</sup> | Int.         | Str.         | Sin.         | atom  |       |
| O1                     | O21                                  | $\checkmark$ | $\checkmark$ |              | T1    | T5    |
| O2                     | 01                                   | $\checkmark$ | $\checkmark$ | $\checkmark$ | T1    | T2    |
| O3                     | 015                                  | $\checkmark$ |              | $\checkmark$ | T1    | T10   |
| O4                     | 016                                  |              |              |              | T1    | T4    |
| O5                     | O2                                   | $\checkmark$ | $\checkmark$ | $\checkmark$ | T2    | Т3    |
| O6                     | 013                                  |              | $\checkmark$ |              | T2    | T8    |
| O7                     | 06                                   |              |              | $\checkmark$ | T2    | T6    |
| O8                     | O20                                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | T3    | T12   |
| O9                     | 03                                   |              |              | $\checkmark$ | T3    | T4    |
| O10                    | 019                                  |              | $\checkmark$ |              | T3    | T6    |
| O11                    | O17                                  |              |              | $\checkmark$ | T4    | T7    |
| O12                    | O4                                   |              |              | $\checkmark$ | T4    | T5    |
| O13                    | 05                                   | $\checkmark$ | $\checkmark$ | $\checkmark$ | T5    | T6    |
| O14                    | O14                                  |              | $\checkmark$ |              | T5    | T11   |
| O15                    | O18                                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | T6    | T9    |
| O16                    | O22                                  | $\checkmark$ | $\checkmark$ |              | T7    | T11   |
| O17                    | 07                                   | $\checkmark$ | $\checkmark$ |              | T7    | T8    |
| O18                    | O23                                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | T7    | T7    |
| O19                    | 08                                   | $\checkmark$ | $\checkmark$ |              | T8    | Т9    |
| O20                    | O12                                  |              |              |              | T8    | T12   |
| O21                    | O25                                  | $\checkmark$ |              | $\checkmark$ | Т9    | T9    |
| O22                    | 09                                   |              |              | $\checkmark$ | Т9    | T10   |
| O23                    | O26                                  | $\checkmark$ |              | $\checkmark$ | T10   | T10   |
| O24                    | O10                                  |              |              |              | T10   | T11   |
| O25                    | 011                                  | $\checkmark$ | $\checkmark$ |              | T11   | T12   |
| O26                    | O24                                  | $\checkmark$ |              | $\checkmark$ | T12   | T12   |

**Table S4.** The indices of O-atoms used in this work, and the corresponding index from the reference from which the MFI structure in this work was constructed, the T-sites bound to each O-atom, and the void environment to which each O-atom belongs.

<sup>a</sup> From the numbering assigned by the International Zeolite Association (IZA).<sup>74</sup>

<sup>b</sup>From van Koningsveld, et. al.,<sup>73</sup> the source of the MFI structure used in this work.

<sup>c</sup>Intersection (int.), straight channel (str.), and sinusoidal channel (str.) void environments are denoted here for each O-atom based on the accessible locations around the atom and its ability to catalyze reactions in those environments.

### S17. Maximum Rate Analysis and Relative Rates

Maximum rate analysis (MRA) examines each rate-determining step assuming every prior step is quasi-equilibrated, thus giving the highest possible rate of each step. The purpose of MRA is not to compare absolute rates of each reaction, nor is it to predict reaction rates comparable to measured data. Instead, our aim in this discussion is to compare relative rates of reactions and identify the rate-determining step of the reaction network. These rates are calculated with incomplete site balances (shown in Section S3 of the SI), and these site balances cancel out when comparing relative rates to identify the rate determining steps (Fig. 2b). We start by comparing the two C<sub>2</sub>H<sub>5</sub>–Z formation steps that occur in parallel, indicating that the step with the highest maximum rate is more likely to occur. C<sub>2</sub>H<sub>5</sub>–Z formation with spectating butene has a maximum rate are over 10<sup>7</sup>-fold lower than rates without spectating butene (Fig. S44), indicating surfacebound ethyl formation occurs in the absence of co-adsorbed C<sub>4</sub>H<sub>8</sub>. Furthermore, the maximum rate of  $C_2H_5$ -Z formation with spectating  $C_4H_8$  decreases with temperature (maximum rates are relative to a bare acid site, causing a negative enthalpy barrier) and this originates from an incomplete site balance—it is unlikely that these rates will decrease with temperature experimentally. Next, we compare the rate of C<sub>2</sub>H<sub>5</sub>–Z formation with the rate of hydride transfer, and, as these steps occur in series, the step with the lowest maximum rate will be rate determining. Because the sequential hydride transfer occurs with maximum rates over 10<sup>2</sup>-times lower than C<sub>2</sub>H<sub>5</sub>–Z formation, the hydride transfer is the rate determining step of the sequential mechanism. Finally, we can compare the maximum rate of the sequential mechanism to the maximum rate of the concerted mechanism to determine the predominant hydride transfer route. For the same reasons discussed for C<sub>2</sub>H<sub>5</sub>-Z formation with spectating C<sub>4</sub>H<sub>8</sub>, both hydride transfer reaction rates have negative effective enthalpies and therefore decreasing rates with increasing temperature; however, it is unlikely this will occur experimentally. The rate of the sequential hydride transfer is 10-times faster than the rate of the concerted hydride transfer (Fig. S44), suggesting the sequential mechanism likely dominates with the hydride transfer as the rate determining step. However, because the transition states structures and maximum rates of the concerted and sequential hydride transfers are similar, these reaction mechanisms essentially indistinguishable.



**Figure S44.** Maximum rate analysis of  $C_2H_5$ –Z formation (red),  $C_2H_5$ –Z formation with coadsorbed  $C_4H_8$  (blue),  $C_2H_5$ –Z hydride transfer (orange), and concerted hydride transfer (green) from 433–783 K at 0.004 bar  $C_2H_4$  and 0.004 bar  $C_4H_8$ . Rates decreasing with temperature in this rate analysis stem from an incomplete site balance; however, this analysis is meant to compare relative rates not absolute rates.

Maximum rate analysis is again employed to find the rate determining step of the alkenemediated pathway in CHA, using the same procedure as MFI. Comparing C<sub>2</sub>H<sub>5</sub>–Z formation with and without spectating  $C_4H_8$ , we find that co-adsorbed  $C_4H_8$  lowers the rate by at least 10<sup>4</sup>-fold (Fig. S45a). Just as in MFI, the effective enthalpy barrier for  $C_2H_5$ -Z formation with spectating  $C_4H_8$  is negative relative to a bare acid site (-38 kJ mol<sup>-1</sup>, Fig. 3b), therefore the maximum rate decreases as C<sub>4</sub>H<sub>8</sub> adsorption becomes entropically limited at higher temperatures (Fig. S45a). Maximum rate analysis suggests the rate of hydride transfer is  $>10^2$ -fold slower than the rate of  $C_2H_5$ -Z formation all temperatures (Fig. S45a), indicating that the hydride transfer is the rate determining step of the sequential mechanism. Finally, we compare sequential and concerted hydride transfer routes and find that sequential hydride transfer occurs with a rate approximately 10 times faster than the concerted hydride transfer (Fig. S45a). We can repeat the same analysis with relative rates (Fig. S45b), which were calculated to remove the incomplete site balance present in maximum rates, to come to the same conclusions. All rates are relative to the slowest step according to maximum rate analysis,  $C_2H_5$ -Z formation with co-adsorbed  $C_4H_8$ . Following the same methodology,  $C_2H_5-Z$  hydride transfer governs the rate of the sequential mechanism because it has a relative rate >10<sup>2</sup>-times slower than C<sub>2</sub>H<sub>5</sub>–Z formation (Fig. S45b). The rate determining step of the alkene-mediated pathway is C<sub>2</sub>H<sub>5</sub>–Z hydride transfer because it has a relative rate 10-times faster than the concerted hydride transfer (Fig. S45b).



**Figure S45.** a) Maximum rate analysis of  $C_2H_5$ –Z formation (red),  $C_2H_5$ –Z formation with coadsorbed  $C_4H_8$  (blue),  $C_2H_5$ –Z hydride transfer (orange), and concerted hydride transfer (green) from 433–783 K at 0.004 bar  $C_2H_4$  and 0.004 bar  $C_4H_8$ . Rates decreasing with temperature in this rate analysis stem from an incomplete site balance; however, this analysis is meant to compare relative rates not absolute rates. **b**) Rates of  $C_2H_5$ –Z formation (red),  $C_2H_5$ –Z hydride transfer (orange), and concerted hydride transfer (green) relative to the maximum rate of  $C_2H_5$ –Z formation with co-adsorbed  $C_4H$  from 433–783 K at 0.004 bar  $C_2H_4$  and 0.004 bar  $C_4H_8$ .

For the CH<sub>2</sub>O-mediated pathway, we start by comparing the maximum rates of CH<sub>3</sub>–Z formation (Fig. S46, blue) and CH<sub>2</sub>OH–Z formation (Fig. S46, red), as they occur in series in the sequential mechanism. CH<sub>2</sub>OH–Z formation has a maximum rate 10-fold lower than CH<sub>3</sub>–Z formation (Fig. S46) and is the rate determining step of the sequential mechanism. The maximum rate of CH<sub>2</sub>OH–Z formation is subsequently compared to the maximum rate of concerted CH<sub>2</sub>O formation (Fig. S46, green) to determine if the CH<sub>2</sub>O-mediated pathway proceeds via the sequential or concerted mechanism. Because these steps occur in parallel, the one with the higher maximum rate indicates the prevailing mechanism; CH<sub>2</sub>OH–Z formation has a maximum rate  $>10^4$ -fold faster than concerted CH<sub>2</sub>O formation (Fig. S46), therefore formaldehyde is formed by the sequential mechanism. The maximum rate of CH<sub>2</sub>O formation (Fig. S46), therefore formaldehyde is formed by the sequential mechanism. The maximum rate of CH<sub>2</sub>O formation (Fig. S46), therefore formaldehyde is formed by the sequential mechanism. The maximum rate of CH<sub>2</sub>O formation, and dehydration. All of these steps occur in series and have maximum rates  $>10^{10}$ -fold faster than CH<sub>2</sub>OH–Z formation is the rate determining step of the CH<sub>2</sub>O-mediated pathway.



**Figure S46.** Maximum rates of the CH<sub>2</sub>O-mediated route in MFI from 433–783 K at 0.1 bar CH<sub>3</sub>OH, 0.01 bar H<sub>2</sub>O, 0.01 bar CH<sub>4</sub>, and 0.1 bar C<sub>3</sub>H<sub>6</sub> with CH<sub>3</sub>–Z formation (blue), CH<sub>2</sub>OH–Z formation (red), concerted CH<sub>2</sub>O formation (green), CH<sub>2</sub>O protonation (orange), butenol formation (gray), and butenol dehydration (black) as the rate determining step. Rates decreasing with temperature in this rate analysis stem from an incomplete site balance; however, this analysis is meant to compare relative rates not absolute rates. Rate equations are defined in Section S3.

In CHA, we again conclude that CH<sub>2</sub>O is formed via the sequential mechanism and that the hydride transfer is the rate determining step, as it occurs with a maximum rate >10-fold lower than CH<sub>3</sub>–Z formation (Fig. S47a, blue) but >10<sup>2</sup>-fold higher than CH<sub>2</sub>O formation (Fig. S47a, red). Compared to the maximum rate of CH<sub>2</sub>OH–Z formation, the maximum rates of the remaining steps (CH<sub>2</sub>O protonation, butenol formation, and dehydration) are >10<sup>8</sup>-fold higher (Fig. S47a). Consistent with what is observed in MFI, the rate determining step of the CH<sub>2</sub>O-mediated pathway in CHA is the hydride transfer of CH<sub>2</sub>OH–Z formation. Relative rates were also calculated relative to the step with the slowest maximum rate (concerted CH<sub>2</sub>O formation) to remove the incomplete site balance in the maximum rates. Relative rates can be analyzed the same way as maximum rates to come to the same conclusion regarding the mechanism by which the CH<sub>2</sub>O-mediated route proceeds. Formaldehyde is formed via the sequential mechanism, and the rate of formaldehyde formation is controlled by CH<sub>2</sub>OH–Z formation because it has a relative rate >10-times slower than CH<sub>3</sub>–Z formation (Fig. 47b). CH<sub>2</sub>O protonation, butenol formation, and dehydration have relative rates >10<sup>8</sup>-times faster (Fig. S47b) than CH<sub>2</sub>OH–Z formation, therefore the rate of the CH<sub>2</sub>O-mediated pathway in CHA is governed by the rate of CH<sub>2</sub>OH–Z formation.



**Figure S47.** a) Maximum rates of the CH<sub>2</sub>O-mediated route in CHA from 433–783 K at 0.1 bar CH<sub>3</sub>OH, 0.01 bar H<sub>2</sub>O, 0.01 bar CH<sub>4</sub>, and 0.1 bar C<sub>3</sub>H<sub>6</sub> with CH<sub>3</sub>–Z formation (blue), CH<sub>2</sub>OH–Z formation (red), concerted CH<sub>2</sub>O formation (green), CH<sub>2</sub>O protonation (orange), butenol formation (gray), and butenol dehydration (black) as the rate determining step. b) Rates of CH<sub>3</sub>–Z formation (blue), CH<sub>2</sub>OH–Z formation (blue), CH<sub>2</sub>O protonation (orange), butenol formation (gray), and dehydration (blue), CH<sub>2</sub>O protonation (orange), butenol formation (gray), and dehydration (black) relative to the rate of concerted CH<sub>2</sub>O formation, the lowest rate according to maximum rate analysis, from 433–783 K at 0.1 bar CH<sub>3</sub>OH, 0.01 bar H<sub>2</sub>O, 0.01 bar CH<sub>4</sub>, and 0.1 bar C<sub>3</sub>H<sub>6</sub>. Rates decreasing with temperature in this rate analysis stem from an incomplete site balance; however, this analysis is meant to compare relative rates not absolute rates. Rate equations are defined in Section S3.