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ABSTRACT: The reliable prediction of properties for the
adsorbates, including their enthalpy, has been a long-standing
challenge as a first key step in studying surface reactions. It is
especially difficult when large adsorbates are involved as the
interactions between the adsorbates and surface atoms are
complex. Here, we developed machine learning (ML) models for
the prediction of the formation enthalpy of various C2 to C6
hydrocarbon adsorbates on the Pt(111) surface based on 384
density functional theory calculations. Focusing on larger and more
intricate adsorbates, two-thirds of the total species were C6 species.
Four molecular descriptors that represent the valency and bonding
of individual carbons within the adsorbates were generated without
intensive computation. They were subsequently used as the features of the ML models with three linear and four nonlinear
algorithms. The models were developed with 30 different samplings of train/test sets, and their results were statistically analyzed to
ensure the performance of the models. Nonlinear models, especially kernel ridge regression and extreme gradient boosting,
outperformed linear models with lower absolute errors. The top two accurate models, based on these algorithms, also displayed
remarkable robustness in predicting various species. Employing ensemble average voting with these two models, we achieved the
lowest mean absolute error of 0.94 kcal/molC. Finally, ML was used to estimate the formation enthalpy of 3115 hydrocarbon
adsorbates on Pt(111), highlighting the promise of these methods to study more complicated reaction networks.

1. INTRODUCTION
One of the biggest challenges in computational catalysis arises
from the intricate nature of catalytic surface reactions, where
the investigation of numerous surface intermediates and active
sites may be required. As a first step to understanding their
surface chemistry, it is critical to reliably obtain the
thermochemical properties of the adsorbates, including
enthalpy, since they are crucial inputs to microkinetic models
for the reactions of interest. While many studies have relied on
quantum-mechanical computation such as density functional
theory (DFT) calculations to derive their thermochemical
properties,1 the sole use of computationally expensive DFT
calculations would be implausible when a great number of
adsorbates are involved. Alternatively, approaches combining
quantum-chemical calculations with machine learning (ML)
have recently emerged and received much attention, showing
the promise for reasonable estimation of adsorption properties
with affordable computational efforts.2−21 For example, a vast
range of catalytic materials or active sites, including different
facets of metals or metal alloys, have been examined by
leveraging estimation of the adsorption energy of small
adsorbates with ML models.2−9 Ideally, we would anticipate
significantly accelerated and more exhaustive screening of the

active sites, surpassing the limitations imposed by traditional
linear scaling relationships.22−24 In addition, other studies have
sought to develop generalized ML potentials that seek to
replicate the quantum mechanical information obtained from
DFT without the computational cost involved.3,10,11

Despite extensive prior studies, challenges still exist in
predicting adsorption properties using ML. This encompasses
the limited examination of adsorbates to relatively simple
species, such as carbon, oxygen, nitrogen, and carbon
monoxide, among other examples, as opposed to exploring
the larger and more complex species involved in many
industrially relevant reactions. Such reactions include Fisch-
er−Tropsch synthesis of long-chain hydrocarbons25,26 and
coke formation during light alkane dehydrogenation,23,27,28 to
name a few, for which hydrocarbons ranging from C1 to C6+
would be surface intermediates. In these reactions, the number
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of alkane-derived surface radicals increases rapidly with the
number of carbons. For example, considering only C−H and
C−C bond formation and cleavage of C1 to C6 hydrocarbons,
we obtain an estimate of more than 3000 surface intermediates
and 38,000 elementary reactions by using the Rule Input
Network Generator (RING).29 As such, considerable
computational costs are expected to study them, even with a
single-facet model. However, it is unclear whether the ML
models developed by small species could reliably be scaled to
larger adsorbates.

Furthermore, the ML models in previous studies have often
employed electronic features such as information from the site-
projected density of states,12−14 e.g., d-band center,15 Coulomb
matrix,16 or the geometric features like bond lengths in the
relaxed structure.17 However, given that the acquisition of
these descriptors requires the use of computationally intensive
techniques such as DFT or other semiempirical methods, their
inclusion may be undesirable for predictive analysis with ML.
This can be especially problematic when we intend to predict
the adsorption energies of large adsorbates. As the size of the
adsorbates increases, the number of combinatorial cases for
DFT calculations to find their minimum energy and structure
will multiply significantly. Moreover, relaxation of large
multidentate adsorbate structures is subject to intricate intra-
adsorbate and surface−adsorbate interactions, presenting a
formidable challenge in reducing the number of calculation
cases by proposing selected candidate structures relying on
simple adsorption rules. For instance, the preferred sp3-
hybridized carbon structure of C1 and C2 hydrocarbons on
Pt(111) found in our previous studies30,31 may no longer apply
for larger adsorbates where some carbons are unable to interact
with the surface. Throughout this study, we encountered cases
in which the best binding geometries displayed more
complicated structures that are not found in smaller species.

Additionally, when evaluating the performance of ML
models, randomly splitting the available datasets into training
sets and test sets could introduce data sampling bias, especially
in cases where the available datasets are small and/or not all
numerical values of descriptors are evenly distributed
throughout the datasets. Random sampling can inadvertently
over- or under-represent some descriptor values in training
sets, leading to larger than expected errors in the test sets. A
more systematic approach would be to perform multiple trials
with differently randomized training/test sets.9,15,16,32 While
some previous studies implemented a single randomized train/
test split,17,19,20 we have implemented 30 randomized trials
followed by statistical analyses.

In this work, our primary goal is to predict the formation
enthalpy of hydrocarbon radicals adsorbed on Pt(111) with
ML models while seeking to tackle the aforementioned
challenges. We developed ML models with C2 to C6
hydrocarbon species on Pt(111) using four molecular
fingerprints describing the local valency and bonding around
each carbon within the adsorbates. Here, the descriptors used
for ML models are readily generated without the need for DFT
calculations. C6 species account for two-thirds of the total
dataset with which ML models were developed, aiming for
reasonable enthalpy prediction for larger hydrocarbon
adsorbates. In addition to linear models serving as benchmarks,
kernel-trick and tree-based ML models were assessed.
Statistical hypothesis testing of the distribution of error
metrics across multiple trials of randomized samplings was
employed to properly assess the models’ performance,

sensitivity, and overall robustness. Then, an ensemble voting
method was implemented for two independent individual
models to further reduce the bias and obtain the best
predictive performance. Lastly, as a case study, the enthalpies
were estimated for a comprehensive list of 3115 C2−C6 acyclic
hydrocarbons on Pt(111) using our ML models, from which
the low-energy species of interest in reaction pathway analysis
can be suggested. Overall, we discuss the sensitivity of the
descriptors, the performance, validity, and robustness of the
ML models based on chemistry and ML algorithms, and the
promise of employing ML models to navigate potential energy
surfaces.

2. METHODS
2.1. DFT and Enthalpy Calculations. Periodic DFT

calculations were performed to calculate the energy of the
adsorbates using the Vienna Ab initio Simulation Package
(VASP).33,34 The Perdew−Burke−Ernzerhof functional with
the dispersion correction (PBE-D3) was used to compute
electron−electron exchange and correlation.35,36 The inter-
actions between ion cores and valence electrons were
considered using the projector augmented wave,37,38 and the
plane wave energy cutoff was 400 eV. The metal slab was based
on the Pt(111) surface of the fcc structure and modeled by a
(4 × 4) surface unit cell with four atomic layers for a total of
64 Pt atoms. A vacuum layer of 12 Å was applied to separate
any two successive slabs in the z-direction (normal to the
surface). The Brillouin zone was sampled using a (4 × 4 × 1)
Gamma-centered Monkhorst−Pack k-point mesh,39 following
a convergence test for adsorption energies for sampling mesh
size. The bottom two layers of each metal slab were fixed in
their bulk positions, while the top two layers were allowed to
relax in all calculations.

Based on the energies calculated from DFT, enthalpies of
formation (Hf,298 K) for 384 hydrocarbon adsorbates were
computed with the equation below using pMuTT40

H E E n E n E Ei i i i i
f,298K ads,0K slab,0K C C H H vib,298K= +

Hf,298 K
i is the enthalpy of the formation of adsorbate i. Eads,0K

i

and Eslab,0K are the total energies for the slab with adsorbate i
on it and the clean slab at 0 K, respectively, both from the DFT
calculation. The referencing terms, nCi EC and niHEH, consist of
the number of each element (nCi EC, niH) in adsorbate i
multiplied by its energetic adjustment (EC, EH). The detailed
information on referencing, including the calculations of EC
and EH, can be found in Section S2 of the Supporting
Information.41 HVib,298 K

i is the temperature contribution from
the vibrational frequencies of adsorbate i, including the zero-
point energy correction. Finally, the calculated Hf,298 K

i was
normalized by the number of carbon atoms, yielding the
enthalpy per carbon. This was done to facilitate comparison
across species of different molecular weights, but it should be
noted that the enthalpy per molspecies varies, e.g., 1 kcal/molC of
enthalpy corresponds to 2 kcal/mol for a C2 species and 6
kcal/mol for a C6 species. Throughout this study, the
formation enthalpy per carbon was used as a target property
for the ML models to properly compare the enthalpies on the
same scale between the species with different carbon numbers.
2.2. Molecular Fingerprints. The adsorbates used in this

study were described with four molecular fingerprints, and they
subsequently served as feature sets for the ML models. It was
reported in the previous ML study with small adsorbates that
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the features related to “free” adsorbates affected the most in
the prediction of binding energies.20 It includes the valency,
molecular weight, and number of bonds of the main element of
the adsorbates, the contribution of which exceeds any other
features derived from adsorption sites. This finding was
transferred and expanded to our chemistry, where the
information on the adsorption site of larger species is limited.
Here, we introduce four molecular fingerprints in which local
valency and chemical bond information on carbons in the
adsorbates are represented in different ways. A binary acyclic/
cyclic descriptor was incorporated in all four fingerprints
described in the following sections since the dataset has both
acyclic and cyclic species. It should be highlighted that the
molecular fingerprints used can easily be generated from
chemical notations of the adsorbates, such as SMILES
(simplified molecular input line entry system)42 because only
information about the free adsorbates is needed.
2.2.1. Group Additivity Fingerprint. Group additivity

fingerprint (GA) schemes41,43−46 have been used since 1958
to parametrize molecular structure by decomposing molecules
into their constituent groups. For our hydrocarbon adsorbates,
each group consists of carbon and its nearest bonded atoms,
including other carbons, hydrogens, and free valencies. Ten
distinct groups are necessary to describe the whole set of
adsorbates, as shown in Table S1. These groups were
systematically assigned for each species using RING, which
implements the group assignments to the entire list of species
and outputs the GA fingerprints. An example is depicted in
Figure S1.
2.2.2. Group Additivity with Surface Structure. We

obtained the next molecular fingerprint, GA with surface
structure (GASS), by adding additional terms to account for
surface distortion.41,46 When applying GA for surface species, it
is often reasonable to add some correction groups to consider
the distorted structure of adsorbates caused by a confined
surface environment or surface strain. As shown in Figure S2,
vinyl is adsorbed on Pt(111), forming 3 C−Pt bonds with
surface Pt atoms. While an ideal sp3-hybridized carbon
structure has a bond angle of 109.5° in the gas phase, one of
the bond angles measured in the vinyl adsorbate on Pt(111) is
96.3° due to deformation of the bond angle caused by surface
ring strain. To account for this surface strain effect the
adsorbates experience, five correction groups (group ID: C01
to C05) were added, as shown in Figure S2. These groups
consist of two carbons sharing a C−C bond, both with at least
one free valency. The groups vary only in the number of C−H
bonds on each carbon in the group. It should be noted that the
correction groups are taken from the free adsorbates without
any surface binding geometry information. An example of the
GASS is illustrated in Figure S3.

GA is flexible enough to incorporate even more correction
groups beyond GASS, but a priori selection of the most
important groups to include is difficult without observing the
surface ring structures and strains that the relaxed adsorbates
exhibit in DFT calculations.
2.2.3. Flat Molecular Fingerprint. Flat molecular fingerprint

(FMF) is another way of describing adsorbates by counting the
types of carbons based on free valency and the number of
bonds between them.47 In this method, carbons are classified
into four types; C0 to C3, where C0 is a saturated carbon with
no free valency, and C1, C2, and C3 are carbons with one, two,
and three free valencies, respectively. Then, the number of
each type of carbon is counted, followed by the number of C−

H bonds and Cx−Cy (x = 0 to 3 and y = 0 to 3) bonds within
the adsorbates. An example of FMF is depicted in Figure S4.
2.2.4. Sequential Valency-Connectivity Fingerprint. While

the FMF displays a total count of different types of carbons
and bonds, it lacks information about their sequential ordering.
Alternatively, we have built the sequential valency-connectivity
fingerprint (SVCF). In the SVCF, the carbon numbers are
initially designated based on the rules primarily derived from
the IUPAC nomenclature guidelines48 (see Section 3.4.1 of
Supporting Information for the detailed rules). Then, the
number of free valencies on each carbon, binary information
on bonding between each C−C pair in the molecule, and the
number of total carbons and hydrogens are specified in the
SVCF. In this way, the local environment of each carbon is
described in sequence. An example is shown in Figure S5.
2.3. ML Methods. With the advent of the era of data and

artificial intelligence, a variety of ML algorithms have been
used for predictive analytics in many applications, such as
disease diagnoses in healthcare,49−52 fraud detection and
prevention in finance,53−55 and object recognition and
classification in image and video analysis,56−58 among many
others. Different algorithms showed distinct advantages and
disadvantages depending on the types of datasets, the size of
the datasets, and the problems to solve.59 Likewise, for the
prediction of adsorption properties in surface chemistry,
multiple ML models from different algorithmic classes have
been tried and evaluated, covering both linear and nonlinear
regression, with the inclusion of techniques like regularization
and the kernel trick, alongside a selection of nonlinear
models.6,8,47,60−62 Herein, we employed both linear and
nonlinear ML models with feature sets derived from four
molecular fingerprints. The linear algorithms used in the study
include multiple linear regression (MLR), ridge regression
(RR),63 and LASSO.64 Then, the kernel trick was used to
introduce the nonlinearity, from which kernel ridge regression
(KRR)65 and support vector regression (SVR)66 were utilized.
The tree-based nonlinear models, random forest regression
(RFR),67 and XGBoost regression (XGB),68 were also used.
Four feature sets were obtained by standardizing each
molecular fingerprint, which resulted in a mean of zero and a
unit variance for each set. The combination of these seven
algorithms and four feature sets resulted in the creation of 28
distinct ML models.

To train, validate, and test the ML models, the Python-based
library “scikit-learn” was used.69 The complete dataset,
consisting of 384 species calculated using DFT, was randomly
divided into five subsets, with each subset containing 20% of
the total dataset. Four subsets (80% of the data) were used to
train and validate, and the rest of one subset (20% of the data)
was used to test the models. This 80/20% train/test split was
repeated five times, ensuring that one subset used for testing
was different each time. In this manner, prediction results for
the whole species were obtained. The hyperparameters of the
ML algorithms used were optimized with a grid search using k-
fold cross-validation (k = 5).

Training and testing ML models with the five subsets
described in the previous paragraph are considered one
iteration. The formation enthalpy of every species was
predicted, and errors were calculated after each iteration. To
ensure the precision and robustness of prediction results by the
ML models, we performed 30 independent iterations with a
random sampling of five subsets for each iteration, generating
the distribution of the enthalpy prediction for each model.
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When performing each iteration, it is noted that specific
fingerprint values that are rare or absent in the training set
could cause divergence in the prediction of test species in
MLR. Regularization would ensure convergence, but the
results would still not be reliable, which makes these cases
undesirable. For selected pairs of models, the independent
sample t-test was conducted using the mean absolute errors,
aiming to ascertain the presence of statistically significant
differences in predictive performance.

Finally, we implemented an ensemble of average voting,
selecting two individual models from the best-performing ones.
Better prediction of the enthalpies could be achieved by
ensemble methods with individual base estimators as it would
enhance generalizability and robustness over a single
regressor.5,55 In this method, the mean of the enthalpy of
each species was calculated from two individual predictions
obtained by two independent algorithms to obtain a final
estimate.
2.4. Adsorbates Used in This Study. The adsorbates

investigated in this study range from aliphatic and olefinic C2
to C6 hydrocarbons and their derived radicals, including both
acyclic and ringed species.

While an ideal comprehensive study would include all
hydrocarbon radicals in this range, the computational expenses
of DFT calculations necessitate the selection of smaller subset
species. Rather than deliberately choosing highly representative
and exemplary species to yield a better predictive model, the
species selected in this study came from all previously
calculated species and structures by the authors.23,30,31,70,71

This more closely resembles the development of practical ML
approaches by using the best available data to generate useful
predictions with the minimum additional computational effort.

C6 species account for two-thirds of the total species, as we
mainly seek the prediction of the enthalpies of relatively larger
species. The information about the number of species used in
the study is summarized in Table 1. The dataset of the

adsorbates excludes any CHx (x = 0 to 3) and dicarbon as their
structures are unique in molecular fingerprints and binding
geometries but not useful for the prediction of whole other
species. For GA of CHx species, different groups from the ones
in Table S1 are needed to describe their structures since the
adsorbates have only one carbon. For example, a group
component of C(H)2(•)2 is required to represent CH2,
whereas this group is not used to explain any other species in
the dataset. This is because all groups used for C2+ species
have at least one carbon as the nearest atom bonded to the
center carbon. Dicarbon also represents a unique structure
where two carbons with three-free valency are directly bonded
to each other. As a result, dicarbons may have distinctive
adsorbate descriptors. For example, in the FMF, the “C3−C3”
component is 1 for dicarbon, whereas it is 0 for all other

species. This uniqueness makes this species a structural outlier,
which is neither beneficial for predicting others nor accurate in
predicting the enthalpy of this species by ML models trained
on other species.

3. RESULTS AND DISCUSSION
An overview of the development of the ML models and their
use for the massive prediction of the enthalpies of new
hydrocarbon adsorbates is illustrated in Figure 1. DFT
calculations were used to obtain surface enthalpies per carbon
for all 384 species in this study. Four molecular fingerprints
were generated for each adsorbate and were input to the ML
models as features, while the DFT-calculated enthalpies were
set as target properties. Each ML model was developed 30
times with different samplings of train-test splits (30
iterations), resulting in a distribution of error metrics (e.g.,
mean and maximum deviation or error) for each model. In
postanalysis, the performance of the models was evaluated for
precision and accuracy (i.e., model robustness), and the best
individual models were ensembled to create the best ML
predictions. Finally, the model was used to estimate the
enthalpy of a significant number of new hydrocarbon
adsorbates on Pt(111).
3.1. Analysis of Prediction Errors Arising from

Stochastic Split-Fold Train/Test Sets. For each of the
nonoverlapping 5-fold train/test set splits, the species assigned
to train/test sets are arbitrary. However, each ML algorithm’s
parameter estimation depends on the specific data input, i.e.,
the species included in that particular split. The randomness of
the species selected for a split introduces stochasticity into the
ML results. This is examined by performing 30 iterations of the
5-fold splits, creating 30 independent trials of the complete ML
approach, allowing for statistical analysis of the algorithm and
fingerprint robustness across 384 species.
3.1.1. Analysis of Mean Absolute Errors. For a single

implementation of the ML models, 30 iterations of 5-fold splits
were performed. For each of these iterations, the mean of
absolute error across all 384 species (MeanAEspecies) was
calculated, yielding 30 values of MeanAEspecies for each model.
The distributions of these MeanAEspecies are displayed in Figure
2a. In similar ways, the maximum value among the absolute
errors of 384 species (MaxAEspecies) is taken in every single
iteration, creating the distributions of 30 MaxAEspecies, as
presented in Figure 2b. In addition, for each boxplot in Figure
2, the first (mean), second (variance), and third (skewness)
moments of the distribution are given in the corresponding
heat maps in Figures 3,S6, and S7, respectively.

In Figures 2 and 3, the MeanAEspecies is lower in nonlinear
models (KRR, SVR, RFR, and XGB) than in linear models
(MLR, RR, and LASSO), regardless of the feature sets used.
The poorer performance of linear models was unsurprising
given that the enthalpy of adsorption is a highly complex
function of the number of carbons in adsorbates. As shown in
Figure 3a, the KRR (1.14−1.22 kcal/molC) and XGB (1.08−
1.26) models have lower MeanAEspecies than any other models.
In KRR, good predictive performance can be expected using an
appropriate kernel function and its parameters,72,73 which were
obtained by allowing the ML algorithm to attempt many
different combinations and select the one with the lowest loss
function. A sampling of the kernel function and parameter
choices explored is included in Table S5. For XGB, the
decision tree branch based on rank or threshold rather than
actual values. This algorithmic characteristic may be

Table 1. Number of Adsorbates Used in This Study

number of carbons number of species

acyclic cyclic

C2 8 0
C3 29 2
C4 39 2
C5 36 12
C6 244 12
total 356 28
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particularly beneficial for regression with discrete data, which is
the case for the four feature sets used here.68 Meanwhile, in
Figure S6a, while all models have reasonably low variances, the
variance of MeanAEspecies across the iterations is generally
lower in linear models (0.00027−0.0011 kcal2/molC2) than in
nonlinear models (0.0009−0.0039). This can also be seen in
Figure 2, where MLR, RR, and LASSO have smaller box
lengths compared to those of the other algorithms. It implies
that linear algorithms produce consistent or stable predictions
with different samplings of the dataset. Consequently, the
linear models have higher precision but lower accuracy,
whereas the nonlinear models have lower (but sometimes
reasonable) precision and higher accuracy.

A statistical hypothesis test, the independent samples t-test,
was conducted to statistically confirm the difference in
performance between KRR and XGB with respect to their
MeanAEspecies. The calculated p-values from the t-test between
various combinations of KRR and XGB models are listed in
detail in Table S2. While the differences between several model
pairs lacked statistical significance (p-value >0.05), the p-values
between XGB + SVCF and all other models were lower than a
significance level of 0.05, as were those for KRR + FMF. In
fact, KRR + FMF showed only minor overlap with two other
models (KRR + GA, p = 0.0010; KRR + SVCF, p = 0.0002)
and XGB + SVCF showed p = 0 for all other models, making
these two models both statistically the most accurate and most
independent of all ML algorithm + molecular fingerprint
combinations studied here, and their independence from one
another indicates that this accuracy is not coincidental but
inherent.

When comparing the four fingerprints, Figure 3a shows that
the best fingerprint choice depends on the class of the ML
algorithm used. GASS was the best when employed with the
linear models MLR, RR, and LASSO. FMF was the most
preferred, with kernel-based KRR and SVR algorithms. The
two tree-based algorithms, RFR and XGB, had the best results
with SVCF. This demonstrates that no single fingerprint
simply outperforms others, but the performance of each
fingerprint depends on its compatibility with the ML algorithm
used. However, fingerprint choice causes only small variations
in the MeanAEspecies within one ML algorithm, with the best
and worst fingerprint choice being within ∼0.2 kcal/molC with
two major exceptions. SVR showed a range of 0.34 kcal/molC
between the best (FMF) and worst (SVCF) fingerprints, and
SVCF showed much poorer compatibility with the linear
models than any other fingerprint choice.

3.1.2. Analysis of Maximum Absolute Errors. For
MaxAEspecies, as with MeanAEspecies, no single fingerprint or
algorithm on its own surpasses the others. In Figure 2b, MLR,
RR, and LASSO showed distributions of MaxAEspecies similar to
each other for any given fingerprint, while the remaining
algorithms varied. Notably, high variances in MaxAEspecies were
observed for the kernel models, including KRR + GASS (82.72
kcal2/molC2, see Figure S6b), SVR + SVCF (28.81), KRR +
GA (17.29), and KRR + FMF (14.98), whereas all linear
models had much smaller variances (0.10−0.51).

This difference in variance may be related to which species
has MaxAEspecies for each iteration. The whole list of species of
MaxAEspecies for the models specified above (all 12 linear
models, KRR + GASS, SVR + SVCF, KRR + GA, and KRR +
FMF) can be found in Figure S8. It should be noted that most
species in Figure S8 are highly unsaturated hydrocarbons,
which suggests an increased complexity of adsorption and
binding modes as unsaturation increases. The relaxed 3D
structures of these species and other highly unsaturated species
can be obtained from the output files in Section S1.

For 12 models using MLR, RR, and LASSO, three species
were responsible for the MaxAEspecies (see Figure S8a), and
tricarbon was the dominant species, accounting for more than
80% of the total cases, 294 out of 360 total iterations (=3
algorithms ×4 features ×30 iterations). Its enthalpy was always
underpredicted in any iteration by −17 to −10 kcal/molC.
Thus, the same species consistently underpredicted by a large
amount but within a small range resulted in a lower variance of
the distribution of MaxAEspecies in linear models. Conversely, in
four nonlinear models (KRR + GASS, SVR + SVCF, KRR +
GA, and KRR + FMF), 17 species are attributed to
MaxAEspecies, which is a much higher number than the three
species found in 12 linear models. No single species comprised
more than 30% of the cases (Figure S8b). In addition, it was
found for some species that the errors fluctuated much across
the iterations within the same model. For example, one of the
isomers of C6H0 is responsible for the MaxAEspecies of the KRR
+ GASS model in 17 out of 30 iterations, and its errors with
this model had a wide range of −6.90 to 40.18 kcal/molC. This
shows that higher variances of MaxAEspecies for some kernel
models are ascribed to not only the variety of species but also
the dependency of accuracy on data samplings for the same
species. That is, unlike the linear models, the prediction of
enthalpy for specific species with nonlinear models can be
sensitive to what species are sampled in training sets. This
trend is also observed in the tree-based nonlinear models, but

Figure 1. Schematic of the development of ML models and their use of enthalpy prediction for a large set of new species.
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Figure 2. Distribution of (a) mean and (b) maximum absolute errors of each model in enthalpy of formation per carbon (in kcal/molC). Each
single data point in the distributions indicates the mean/maximum absolute errors of 384 species in one iteration. Distribution of each model
includes 30 data points obtained from 30 iterations. Box represents the data between the first (Q1) and third (Q3) quartiles, and the green line
within the box denotes the median (Q2). Distance between Q1 and Q3 is called the interquartile range (IQR). Upper and lower whiskers extend to
the furthest data points that are within Q3 + 1.5 × IQR and Q1 − 1.5 × IQR, respectively. Data points outside the whisker limits are considered
outliers and are marked as white dots.
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far more moderately, as shown in the heatmap in Figure S6b. It
is possibly due to the algorithmic benefits of decision trees and
ensemble methods, which impart robustness to outliers.67,68

When the decision trees are built based on the feature values,
they can create splits that minimize the impact of individual
extreme data points. In addition, the ensemble methods used
in RFR (bagging) and XGB (boosting) with multiple decision
trees help mitigate the impact of the outliers present in
individual trees. To ensure the robustness of the prediction, it
would eventually be important to try to include many
chemically similar species in the training set. In terms of ML
models, this would mean sampling the species with similar
compositions of feature components in the training set.
Therefore, a diversity of components in terms of richness
and evenness, as well as the elimination of data sparsity, would
be important for the features of the training data.
3.2. Examination of the Validity of ML Models. To

examine the credibility of the ML models, we performed
computational tests by intentionally adding two-dimensional
vectors of random integers (0 to 4) to each feature, followed
by the development of ML regression models using the raw
and random vector-added features for one iteration. Then, the
errors of the randomly disturbed (RD) dataset were compared
to the original estimators. The mean absolute errors of a single
iteration for the models trained on normal and RD datasets are
presented in Tables S3 and S4. The mean absolute errors of
MLR, RR, and LASSO are comparable between the normal
and RD datasets, with a difference (=RD − normal) of −0.02
to 0.03 kcal/molC. For more accurate nonlinear models, the
mean absolute errors were increased by 0.02−0.22 kcal/molC
with the RD datasets, except for SVR + SVCF (decreased by
0.03). It demonstrates that the random noise added to the
descriptors cannot improve the estimation of the enthalpies in

most models but rather worsens it, especially for more rigorous
models, revealing the reliability of molecular-fingerprint-based
ML models. That is, the reasonable accuracy of the estimation
should be attributed to properly describing the local valency
and bond types of carbons in the adsorbates with the molecular
fingerprints and not random values inserted into the
descriptors. The effect of a random disturbance either worsens
the prediction or has a negligible impact.
3.3. Evaluation of Individual ML Models and

Ensemble of Average Voting. 3.3.1. Overall Performance
of Individual ML Models. The mean and variance from the
distribution of MeanAEspecies for each model were investigated
to assess both the accuracy and the robustness of the individual
ML models, with two plots shown in Figure 4. Two variances
are employed in the analysis. First, the variance plotted in
Figure 4a is calculated from the distribution comprising 30
MeanAEspec i e s obtained from each iteration, i .e . ,
Var|iter(MeanAEspecies), also given in Figure S6a. Larger values
of Var|iter(MeanAEspecies) indicate greater variance in Mean-
AEspecies values when different samplings are applied, and
conversely, smaller values imply greater consistency. Compar-
ing these metrics in Figure 4a, XGB + SVCF is the best model,
having both the smallest error and among the lowest variances,
with KRR + FMF and KRR + SVCF also showing good
performance. The high precision (low variance) but low
accuracy (high error) of linear algorithms (MLR, RR, and
LASSO) is also evident, with all of them clustered in the lower
right quadrant of the plot.

One can also compare the variance and error across each
individual species, averaged over the 30 independent
estimations obtained from the iterations. Figure 4b plots the
mean absolute errors of each iteration across 384 species
(MeanAEiter) against the variance of the errors across the 384
species, Var|species(MeanAEiter). It should be noted that the
MeanAEspecies = MeanAEiter as either represents an average over
species and iterations, so the order of the averaging does not
matter. Here, Var|species(MeanAEiter) represents how consistent
the predictions of the enthalpy for a single species can be
across 30 trials with a given model. That is, larger values
indicate that the errors for some species are significantly larger
than the errors for others, while smaller values indicate that the
model is able to predict enthalpies for all species more
consistently, giving greater confidence in the chemical enthalpy
prediction for any given species in the dataset. Here, the
limitations of the three linear algorithms (MLR, RR, and
LASSO) in the upper right quadrant of the plot indicate both
high mean error but also a high extent of variation in the
quality or confidence in those predictions depending on the
species (e.g., behavior of highly unsaturated species captured
poorly as discussed above), even though those poor
predictions are predicted consistently across all 30 trials.
Conversely, the models with KRR and XGB are in the bottom
left quadrant, representing their consistent predictions of the
enthalpies of specific species regardless of iteration. Hence, it is
anticipated that KRR and XGB would exhibit relatively
uniform errors centered around the mean for any predicted
species. Figure 4b reaffirms XGB + SVCF, KRR + FMF, and
KRR + SVCF as the three most accurate and robust models for
these 384 hydrocarbon adsorbates.

In combination, Figure 4a,b reveals the robustness of the
models to statistical sampling and chemical representation
challenges inherent in ML from limited datasets. Figure 4a
captures the statistical robustness of the models by indicating

Figure 3. Heat maps for the (a) mean and (b) maximum absolute
errors of each model in enthalpy of formation per carbon across the
30 iterations. All numbers in both heat maps are in kcal/molC.
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how consistent the results are for a given sampling or iteration
of each model. Figure 4b shows the chemical robustness of the
models, revealing which models are expected to give similar
confidence in their predictions for any of the species.
3.3.2. Prediction of Individual Species across Iterations.

Predicting enthalpies for individual species is further explored
in the parity plots of Figure 5, where the enthalpy prediction
with ML for 384 species, averaged over 30 iterations, is
compared to the DFT-calculated enthalpies. Some trends
emerged between different ML approaches applied at the level
of individual chemical species. Notably, MLR, RR, and LASSO
have not only quantitatively similar mean and variance to each
other in distributions but also similar predictions for individual
species, as seen in the parity plots. Significant errors are

observed with the species of high per-carbon formation
enthalpies in these models. Given most of them are highly
unsaturated species, large deviations would mainly be due to
the enthalpy’s nonlinear trend with local valency and bond
types of adsorbates. These limitations were generally improved
upon when nonlinear models were applied. Among these, XGB
+ SVCF, KRR + FMF, and KRR + SVCF were the most
accurate and robust models in Figure 4. It is also found that
these models present consistently reliable predictions for most
of the species in Figure 5. The parity plots also show that the
deviations from the parity line for these models did not depend
on the enthalpy, supporting, once again, that these models gave
consistently reliable predictions for all species. RFR- and SVR-
based models, which have higher Var|species(MeanAEiter) values,

Figure 4. Mean and variance plots for the distribution of mean absolute errors for each model in enthalpy of formation per carbon. (a) Mean and
variance for each model were calculated across 30 iterations. Variance quantifies the amount of dispersion in errors for a set of randomly sampled
iterations. (b) Mean and variance for each model were computed across 384 species. Variance measures the amount of spread in errors across 384
species.
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Figure 5. Parity plots for DFT-calculated and ML-predicted enthalpies of formation per carbon. Each row represents the molecular fingerprints (or
features) and each column represents algorithms.
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show poorer performances at high and very low enthalpies in
the larger spreads seen in the parity plots.

When the mean enthalpy prediction is calculated by
averaging 30 iterations for use in the parity plots, some
information about the deviations between individual iteration
errors relative to the mean value is lost. Namely, the mean
error for a set of 30 predictions need not be equal to the mean
absolute error if the predictions are both overpredicted and
underpredicted in different iterations. While the significance of
the mean absolute error does not change, the predicted mean
enthalpy may arise from error cancellation between these
disparate iterations. In Figure S9, the mean errors of each
species through 30 iterations are on the x-axis and the
MeanAEiter is on the y-axis for KRR + FMF and XGB + SVCF.
If error cancellation reduces mean error relative to mean
absolute error, the data points will have a large deviation from
y = |x|, specifically the points that appear closer to the vertical
line x = 0. On the other hand, the species whose predictions
are consistent will be on or near the y = |x| line, i.e., the mean
error and mean absolute error are equivalent. It is noted in
Figure S9 that most species are on or very close to the parity
lines in both models, indicating a few effects of error
cancellation. However, several species still exhibit deviations.
For example, six species calculated by KRR + FMF have a
difference larger than 0.75 kcal/molC from y = |x| and are listed
in Figure S10a. The low precision of the enthalpy prediction
across the iterations, leading to error cancellation, could be
misleading when interpreting the overall predictive reliability
of the models. For XGB + SVCF, the species are more aligned
with the parity lines in Figure S9b, which implies there are
fewer species benefiting from error cancellation when
calculating the enthalpy. No species has a deviation larger
than 0.75 kcal/molC from y = |x|, and there are six species with
deviations between 0.75 and 0.5 kcal/molC, as shown in Figure
S10b.
3.3.3. Ensemble Average Voting of the Individual ML

Models. Finally, to maximize the general accuracy of the ML
model, an ensemble of average voting was implemented with
two models, KRR + FMF and XGB + SVCF, the best two
individual estimators in terms of accuracy and robustness. The
parity plot of the ensemble model of KRR + FMF and XGB +
SVCF is displayed in Figure 6. As expected, the accuracy of the
ensemble model was improved with a mean absolute error of
0.94 kcal/molC, which is lower than any other individual
regressor. It exemplifies that more reliable estimation can be
attained through the voting ensemble method for most species
by complementing independent individual models with each
other.5,74

The performance of the ensemble model for subsets of the
data can be found in Figure S12, where Cn species (n = 2, 3, 4,
5, and 6) are highlighted against the whole dataset as well as
cyclic/acyclic species. No significant differences are observed
in prediction accuracy as a function of carbon number, with
predictions within each group roughly consistent with the
dataset as a whole. The same can be said when comparing
cyclic and acyclic species. It is rather the species with very low
or very high formation enthalpies that show the largest
deviations from the parity line.
3.4. Prediction of the Enthalpies of Exhaustive C2 to

C6 Acyclic Hydrocarbon Adsorbates. The development of
our ML models should contribute to significantly reducing the
computational efforts for the investigation of reaction networks
involving surface intermediates of large hydrocarbons. One

way to accomplish this would be by estimating enthalpies for
an extensive list of surface species using the ML models and
suggesting species of low energies and significance on a
potential energy diagram. This would essentially create
priorities for species requiring more DFT calculations and/or
ideally lead to generating preferred reaction pathways.

To showcase it, we have first enumerated 3115 C2 to C6
acyclic hydrocarbon adsorbates in SMILES that are potentially
involved in carbon chain growth reactions on metal surfaces.
Their enthalpies on Pt(111) were estimated using the
ensemble models of KRR + GA and XGB + GA, which are
two of the superior individual models, as shown in Figure 4.
GA was selected simply because algorithms for generating the
feature sets from SMILES are available in RING and readily
available for other researchers. To ensure reliability, 30
iterations were carried out, and the mean of predictions
throughout the iterations was used as a final output. The
predicted formation enthalpy per carbon and total formation
enthalpy are presented in blue for every CxHy (x = 2 to 6, y = 0
to 13) in Figure 7. The 384 species for which DFT-derived
values were available in this study are shown in red. It is first
noted that while the total formation enthalpy has a large
difference in its range from C2 (−30 to 35 kcal/mol) to C6
species (−80 to 200 kcal/mol), the range of formation
enthalpy per carbon is relatively small, for instance, −15 to 20
kcal/molC for C2 and −15 to 35 kcal/molC for C6 species. This
reinforces the usage of enthalpy per carbon as a target variable
for the ML models instead of total enthalpy to avoid the
overestimation of errors in larger adsorbates. In addition, it is
highlighted how effectively the ML model was developed by
using only a subset of the hydrocarbon adsorbates and was
leveraged to predict the enthalpies of a massive list of species.

In Figure 7, the formation enthalpy of the adsorbates with
the same carbon numbers is negatively correlated with the
number of hydrogens. That is, as the hydrocarbons become
more saturated, their formation enthalpies on Pt(111)
generally decrease. To examine the energetically favorable
species among the structural isomers, one can find species of
lower enthalpies at the same x-values in Figure 7. For example,
only 9 species have total formation enthalpies lower than −27
kcal/mol among the 390 isomers studied for C6H7, which can
be taken at x = 6.35. In similar ways, all thermodynamically

Figure 6. Parity plot of the ML-predicted and DFT-calculated
enthalpy of formation per carbon for the ensemble average voting
model of KRR + FMF and XGB + SVCF. Mean AE: mean absolute
error and Max AE: maximum absolute error.
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preferred adsorbates can be obtained at each saturation level of
hydrocarbons, giving some insights into possible reaction
pathways.

4. CONCLUSIONS
In this study, we explored ML models predicting the formation
enthalpies of various C2 to C6 hydrocarbon radicals adsorbed
on Pt(111). The predicted enthalpies per carbon were
compared with the values obtained from the DFT calculation
for 384 species. By including C6 species in two-thirds of the
total datasets, our models mainly targeted relatively large
hydrocarbons, expanding the space of adsorbates in the
investigation of adsorption properties with ML. To capture
the nonlinear behavior of the enthalpy resulting from the
complex interaction, two algorithms with the kernel trick and
two tree-based ML algorithms were applied, and three linear
models were also compared as a benchmark. Four molecular
fingerprints were developed and served as features for the ML
models with which the valency and bond of individual carbons
within the adsorbates are effectively described. Notably, no
DFT calculation or any other intensive computation was
required to generate these fingerprints. To ensure the reliable
evaluation of individual ML models, each model was trained,
validated, and tested with 30 different train/test samplings.

It was found that nonlinear models (KRR, SVR, RFR, and
XGB) have lower mean absolute errors than the linear models
(MLR, RR, and LASSO), outperforming the accuracy in
general because of their better explanatory power for the
nonlinear complexity of adsorption. In particular, KRR and
XGB have the lowest mean absolute errors due to their
algorithmic adequacy to our feature sets. By the independent
sample t-test performed for the combination of KRR and XGB
used models, XGB + SVCF and KRR + FMF were the two best
statistically distinct models in terms of accuracy. For molecular
fingerprints, note that no single fingerprint dominates the
predictive performance. Rather, the best fingerprint with the
lowest mean absolute error was dependent on the combination
of features and algorithms. The accuracy of the prediction for
specific species can be sensitive to the train-test samplings,
especially for largely unsaturated hydrocarbon radicals or
species with rare fingerprint compositions. Also, the validity of

the ML models was proved by testing them with the
introduction of random disturbances to each descriptor,
where we found an increase of errors in most of the cases.

The robustness of the models was assessed with the mean
and variance of the distribution of mean absolute errors, from
which XGB + SVCF and KRR + FMF had not only the best
accuracy but also the best robust models. The prediction of
individual species displayed these results as well in the parity
plots with the minimized effect of error cancellation. To
improve the accuracy beyond the individual models, an
ensemble of average votes was introduced with the two best
individual models. The ensemble model predicted the
adsorbate formation enthalpy per carbon most accurately,
with a mean absolute error of 0.94 kcal/molC.

Finally, a case study was carried out to exhibit the use of our
ML models when investigating the preferred pathways on
surface reactions. The formation enthalpy per carbon for a
total of 3115 C2 to C6 acyclic hydrocarbon adsorbates on
Pt(111) was predicted using the ensemble models of KRR +
GA and XGB + GA. It was plotted for the number of carbons
and hydrogens, and the species with lower enthalpies at the
same CxHy (x = 2 to 6 and y = 0 to 13) level were easily
identified. Collectively, screening these species at each level of
hydrocarbons would reduce computational efforts and provide
potential reaction pathways.

Our study exemplified the promise to extend the ML study
for the properties of adsorbates to more complex species. We
believe this study helps shed light on tackling the challenges for
the prediction of adsorbates in order to study more
complicated reaction networks.
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referencing the enthalpy of formation; molecular finger-
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individual ML models; analysis of the species with the
maximum absolute errors; comparison of the errors
between normal and randomly disturbed datasets; effect
of the error cancellation for individual species; ensemble
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