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Section S1. Details of Standard Statistical Mechanics Treatments  

 

The enthalpy of a given state can be written as the sum of the DFT-derived energy (E0), zero-point 

vibrational enthalpy (ZPVE) and vibrational, translational and rotational enthalpy (Hvib, Htrans and Hrot):  

0 vib trans rotH E ZPVE H H H= + + + +    (S1)   

similarly, the free energy of a state can be written as:  

0 vib trans rotG E ZPVE G G G= + + + +    (S2)   

and entropy can be determined for a state with a known H and G at a given T: 

H G
S

T

−
=       (S3)  

For calculations which include a periodic Ir(111) surface (including adsorbed species and transition 

states on that surface), there are no translational or rotational degrees of freedom and DFT-derived 

vibrational frequencies can be used to determine the ZPVE, Hvib and Gvib shown in Eqns. S4-6. 

 

𝑍𝑃𝑉𝐸 = ∑ (½𝜈𝑖ℎ)𝑖      (S4)  

 

𝐻𝑣𝑖𝑏 = ∑ (
𝜈𝑖ℎ𝑒

−𝜈𝑖ℎ

𝑘𝑇

1−𝑒
−𝜈𝑖ℎ

𝑘𝑇

)𝑖      (S5)  

 

𝐺𝑣𝑖𝑏 = ∑ (−𝑘𝑇 ln
1

1−𝑒
−𝜈𝑖ℎ

𝑘𝑇

)𝑖     (S6)  

Gas-phase molecules have translational and rotational degrees of freedom; thus Htrans, Hrot, Gtrans and Grot 

must also be computed: 

𝐻𝑡𝑟𝑎𝑛𝑠 = 5
2⁄ 𝑘𝑇       (S7)   

𝐻𝑟𝑜𝑡,𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑘𝑇       (S8)  

𝐻𝑟𝑜𝑡,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = 3
2⁄ 𝑘𝑇      (S9)  



S4 

 

 

𝐺𝑡𝑟𝑎𝑛𝑠 = −𝑘𝑇 ln [(
2𝜋𝑀𝑘𝑇

ℎ2
)

3 2⁄

𝑉]     (S10)   

𝐺𝑟𝑜𝑡 = −𝑘𝑇 ln [
𝜋1 2⁄

𝜎
(

𝑇3

𝜃𝑥𝜃𝑦𝜃𝑧
)

1 2⁄

]     (S11)  

𝜃𝑖 =
ℎ2

8𝜋2𝐼𝑖𝑘
       (S12)  

where Ii is the moment of inertia about axes x, y or z and σ is the symmetry number of the molecule, 2 for 

H2. 
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Section S2. Derivation of Thermodynamic Treatments 

The surface area (𝐴surf) of the two-dimensional adsorbed phase is constant (analogous to a constant volume in a 

three-dimensional system), and therefore the enthalpy is identical to the internal energy (H = U) and the Gibb’s free 

energy is identical to the Helmholtz free energy (G = A). 

 

𝐺 = 𝐴 = −𝑘𝐵𝑇 ln 𝑄                                                                                     (S13) 

Entropy can be obtained from the Helmholtz free energy via a Maxwell relation: 

𝑆 = −
𝜕𝐴

𝜕𝑇
)

𝑁,𝐴surf

                                                                                        (S14) 

For identical non-interacting classical particles, we can describe the single-particle partition function (q) in a two-

dimensional potential energy surface as: 

𝑞 =
1

Λ𝑡ℎ
2 ∬ 𝑒

(
−𝐸(𝑥,𝑦)

𝑘𝐵𝑇
)
𝑑𝑥𝑑𝑦                                                                    (S15) 

The integral above is done over the entire metal surface (𝐴surf) and 𝐸(𝑥, 𝑦) ≥ 0, therefore the integral has a 

maximum value of 𝐴surf. Let’s define (to make things simpler), the area from the PES per surface metal atom as 

𝛼𝑃𝐸𝑆: 

𝛼𝑃𝐸𝑆 =
1

𝑁Msurf

∬ 𝑒
(

−𝐸(𝑥,𝑦)
𝑘𝐵𝑇

)
𝑑𝑥𝑑𝑦 = ∬ 𝑒

(
−𝐸(𝑥,𝑦)

𝑘𝑇
)
𝑑𝑥𝑑𝑦

1×1

                              (S16) 

Note: If the potential energy surface is flat, then 𝛼𝑃𝐸𝑆 is the area of a 1×1 Pt (111) surface. The total canonical 

partition function is: 

𝑄 =
𝑞𝑁

𝑁!
                                                                                                           (S17) 

and we can substitute Eq. S15 into that, and apply Stirling’s approximation, to get: 

𝑄 =
𝛼𝑃𝐸𝑆

𝑁 𝑁Msurf

𝑁 𝑒𝑁

Λ𝑡ℎ
2𝑁𝑁𝑁

=
𝛼𝑃𝐸𝑆

𝑁 𝑒𝑁

Λ𝑡ℎ
2𝑁𝜃𝑁

                                                                                   (S18) 

where N is the number of H* adsorbates and θ is the ratio of H* to surface-metal atoms. Substituting the expression 

for Q into Eq. S17. 

𝐺H*,avg,PES
𝑥𝑦

= 𝐴H*,avg,PES
𝑥𝑦

= −𝑅𝑇 [ln (
𝛼𝑃𝐸𝑆

Λ𝑡ℎ
2 𝜃

) + 1]                                                   (S19) 

Before defining the entropy, I will put the definition of α back in. The average (or integral) molar translational free 

energy of a species with a given potential energy surface, 𝐸(𝑥, 𝑦), is: 

𝐺H*,avg,PES
𝑥𝑦

= 𝐴H*,avg,PES
𝑥𝑦

= −𝑅𝑇 [𝑙𝑛 (
1

Λ𝑡ℎ
2 𝜃

∬ 𝑒
(

−𝐸(𝑥,𝑦)
𝑘𝑇

)
𝑑𝑥𝑑𝑦

1×1

) + 1]                                    (S20) 

where we will bound the integral within a 1 × 1 surface. Differentiation gives: 

𝑆H*,avg,PES
𝑥𝑦

= −
𝜕𝐴H*,avg,PES

𝑥𝑦

𝜕𝑇
)

𝐴,𝑁

                                                                                   (S21) 

𝑆H*,avg,PES
𝑥𝑦

= 𝑅 [𝑙𝑛 (
1

Λ𝑡ℎ
2 𝜃

∬ 𝑒
(

−𝐸(𝑥,𝑦)
𝑘𝑇

)
𝑑𝑥𝑑𝑦

1×1

) +
∬

𝐸(𝑥, 𝑦)
𝑘𝑇

𝑒
(

−𝐸(𝑥,𝑦)
𝑘𝑇

)
𝑑𝑥𝑑𝑦

1×1

∬ 𝑒
(

−𝐸(𝑥,𝑦)
𝑘𝑇

)
𝑑𝑥𝑑𝑦

1×1

+ 2]                     (S22) 

The other term we will define is a Boltzmann-averaged energy (𝛽𝑃𝐸𝑆): 
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𝛽𝑃𝐸𝑆 = ∬
𝐸(𝑥, 𝑦)

𝑘𝑇
𝑒

(
−𝐸(𝑥,𝑦)

𝑘𝑇
)
𝑑𝑥𝑑𝑦

1×1

                                                               (S23) 

Computing the differential free energy and entropies from these average properties gives (and substituting Eqs. S16 

and 23 for α and β):  

𝐺H*,PES
𝑥𝑦

= −𝑅𝑇𝑙𝑛 (
𝛼𝑃𝐸𝑆

Λ𝑡ℎ
2 𝜃

)                                                                                 (S24)  

𝑆H*,PES
𝑥𝑦

= 𝑅 [𝑙𝑛 (
𝛼𝑃𝐸𝑆

Λ𝑡ℎ
2 𝜃

) +
𝛽𝑃𝐸𝑆

𝛼𝑃𝐸𝑆
+ 1]                                                               (S25) 

These equations are used as the starting point for determining the two-dimensional translational free energy and 

entropy for adsorbed H* as further described in the main text. The free energy of a 2-D system described by a PES 

is given by Eq. S24. For a flat PES (ideal gas), the ‘area’ of the PES (𝛼𝑃𝐸𝑆) is the area of each metal atom (𝛼0): 

𝐺H*,ideal
𝑥𝑦

= −𝑅𝑇𝑙𝑛 (
𝛼0

Λ𝑡ℎ
2 𝜃

)                                                                  (S26) 

In an excluded area model, with an otherwise-flat PES, this area is decreased by the area of a H* atom, when such 

an atom is present. As such, 𝛼0 is replaced by (𝛼0 − 𝜃𝑏): 

𝐺H*,co-area
𝑥𝑦

= −𝑅𝑇𝑙𝑛 (
𝛼0 − 𝜃𝑏

Λ𝑡ℎ
2 𝜃

)                                         (S27) 

Taking the derivative of this free energy term at constant T and N (number of H*) gives the entropy: 

𝑆H*,co-area

𝑥𝑦
= −

𝜕𝐺H*,co-area
𝑥𝑦

𝜕𝑇
)

𝐴,𝑁

                                                                   (S28) 

gives an expression for the two-dimensional translational entropy of an excluded-area gas model: 

 𝑆H*,co-area
𝑥𝑦

= 𝑅 [𝑙𝑛 (
1

Λ𝑡ℎ
2 ∙

𝛼0 − 𝜃𝑏

𝜃
) + 1 −

𝑏

𝛼0 − 𝜃𝑏
]                            (S29)  
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Section S3. Adsorption Isotherms 

 

Figure S1. Adsorption isotherms for H2 dissociative adsorption on Pt (1.6 % wt. Pt/Al2O3 9.1 nm (a) and 

3.0 nm (b) mean cluster size; 1 % wt. Pt/SiO2 1.6 nm mean cluster size (c)) at 673 K (), 623 K (), 573 

K (▲), 548 (+), 523 K (), 498 K (×) and 473 K (). 
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Section S4. Temperature Dependence of the Heat of Adsorption and Entropy Loss 

 

S2.1. Change in enthalpy: 

The temperature dependence of the isosteric heat of adsorption as a consequence of the change in enthalpy 

upon H2 dissociative adsorption is given by the difference in heat capacities ( pC− ) between the gas 

phase (Cg) and the adsorbate ( aC ): 

( ) p
p

ag

n

agH CC2C
T

H
2

T

H

T

Q

H

−=−=













−











=















   (S30) 

where, Hg and aH  are the molar gas-phase enthalpy and the differential adsorbed phase enthalpy, 

respectively. The isosteric heat of adsorption ( ( )
H

HQ


) is related to the differential heat of adsorption (QH) 

by: ( ) RTQQ HH
H

+=


. 

Local (S31a) and mobile (S31b) dissociative H2 adsorption can be described by the following expressions: 
2

H

H
HH21

H

21

H

21

H

21

H

H
1

PK
PK1

PK

2

2

2










−


=

+
=     (S31a) 

2

H

H

H

H
HH

21

H

21

HH
1

exp
1

PKorPK
22 























−











−


==    (S31b) 

where 
2HP  is the hydrogen pressure at equilibrium and KH is the equilibrium constant given in both cases 

by:  









=

RT

E
expKK 0H         (S32) 

in which E is the potential minimum energy of an adsorbed molecule and K0 can be estimated by statistical 

mechanics as: 

( )
( )( )
( )TQ

Tq
TK

gas

2
a

0 =         (S33) 

qa and Qgas are the molecular partition functions of the adsorbed (H*) and gas (H2) phases, respectively. 

Substituting Equations (S31a-b), (S32) and (S33) into Equation (4) gives: 

( )
( )

( )
H

H T

TKln
RTEQ 02

H



 











−=       (S34) 

The partition function for H2 in the gas phase is given by the product of the partition functions for the 

different degrees of freedom (vibrational (qg,v), translational (qg,t) and rotational (qg,r)): 

( ) r,gt,gv,ggas qqqTQ =         (S35) 



S9 

 

1
1

exp

2

1
exp

q

v,g

v,g

v,g

−































=         (S36a) 

with 



=


=

g
v,g

v,g

v,g

h
and

T
 

( )
V

h

Tm2
q

3

23

t,g


=         (S36b) 

r,g2

2

r,g
h

TI8
q =




=         (S36c) 

τg,v is the vibrational temperature, νg is the vibrational frequency of H2 in the gas phase, h and κ are the 

Planck’s and Boltzman’s contants, respectively. m is the mass of H2, V is the volume, I is the moment if 

inertia, σ is the symmetry factor (2 for H2) and τg,v is the rotational temperature. 

The partition function of H* (qa) is given by the product of contributions of the molecular partition 

function vibrational (qa,v) and translational (qa,t)): 

( ) t,av,aa qqTq =         (S37) 

For the adsorbate phase we have considered two different extreme cases for the state of H*: localized 

immobile adsorption and mobile adsorption.  

 

Localized Immobile Adsorption: 

For localized immobile adsorption, we approximate translational DOF as two additional vibrations such 

that H * has three vibrational degrees of freedom, one normal to the surface and two parallel: 

( ) 
=

−































==

3

1i

vi,a

vi,a

v,aa

1
1

exp

2

1
exp

qTq       (S38) 

with 



=


= ai

vi,a

vi,a

vi,a

h
and

T
 

νgi is the vibrational frequency i for adsorbed hydrogen (H*), τa,vi is the vibrational temperature for the νgi. 

Substituting Equations (S32) and (S35) in Equation (S33), the K0 for immobile adsorption is: 
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( )
( )

1
1

exp

2

1
exp

1
1

exp

2

1
exp

Tm2T

h
TK

v,g

v,g

r,g

2

3

1i

vi,a

vi,a

el

23

3

0

−





















































−


































=


=

    (S39) 

Substituting Equations (S39) in Equation (S34) gives the isosteric heat of adsorption as a function of 

vibrational and rotational temperatures: 

( )











































−

−

































+





















−































−


+−−= 

=


3

1i

vi,a

vi,a

vi,a

v,g

v,g

v,g

H 1

1
1

exp

1
exp2

1

1
1

exp

1
exp

2

11

2

7
RTEQ

H

 

 (S40) 

Whose derivative with respect to the temperature at constant H* coverage gives the difference in heat 

capacities between the adsorbate and the gas phase: 
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=

3

1i

vi,a

vi,a

2

vi,a

vi,a

2

vi,a

2

v,g

v,g

v,g

v.g

2

v,g

_

1
1

exp

1
exp

1
1

exp

2
exp

2

1
1

exp

2
exp

1
1

exp

1
exp

1

2

7
RpC

 (S41) 

 

Mobile Adsorption: 

For the mobile adsorption, in which H* vibrates normal to the surface and moves without constraints in 

the x and y directions parallel to the surface, the partition function of the adsorbate is given by: 

( ) 











 





















−































==

2

2

v,a

v,a

el
D2
t,av,aela

h

Tm2a

1
1

exp

2

1
exp

qqTq    (S42) 

where, a2 is the unit area for the 2-dimensional adsorbed phase translational partition function. 

K0 for mobile adsorption is obtained by substituting Equations (S35) and (S42) in Equation (S33): 
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( )
( ) ( )

1
1

exp

2

1
exp

1
1

exp

2

1
exp

Th

Tm2a
TK

v,g

v,g

r,g

2

v,a

v,a

2122
el

0

−





















































−



































=     (S43) 

The isosteric heat of hydrogen adsorption is then given by (substituting Equation (S43) into Equation 

(S34)): 

( )











































−

−
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−


+−−=


1

1
1

exp

1
exp2

1

1
1

exp

1
exp

2

11

2

3
RTEQ

v,a

v,a

v,a

v,g

v,g

v,g

H
H

 

 (S44) 

And the difference in heat capacities: 
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1
1

exp

1
exp

1
1

exp

2
exp

2

1
1

exp

2
exp

1
1

exp

1
exp

1

2

3
RpC

vi,a

vi,a

2

vi,a

vi,a

2
vi,a

2

v,g

v,g

v,g

v.g

2
v,g

_  (S45) 

 

S2.2. Loss in entropy: 

The temperature dependence of the loss in entropy as a result of the change in enthalpy with temperature 

can be estimated by applying a similar approach to that described above for changes in enthalpy.  

The difference in heat capacities ( pC− ) between the gas phase (Cg) and the adsorbate ( aC ) can be also 

derived from the derivative of the molar and differential entropy of the gas and adsorbed phases at constant 

pressure: 

P

H

P

a

P

g
p

T

S
T

T

S
T2

T

S
TC 












−=












−












=−     (S46) 

which is equal to the change in heat of adsorption with the temperature. Thus the change in entropy with 

temperature is given by: 















=

−
=












−

T

Q

T

1

T

C

T

S Hp

P

H       (S47) 
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Section S5. Local Langmuir Isotherm for Non-Uniform Surfaces: QH Approach 

 

The dissociative adsorption on a non-uniform surface can be described, regardless of the model, as a 

function of ( )
H

HQ


 or ΔGH (change in Gibbs free energy), 
2HP and temperature (T) [1]. Next, we derive 

the adsorption isotherms that describe the experimental data for H2 adsorption on Pt/Al2O3 (9.1 nm and 

3.0 nm Pt clusters) at 523-673 K for the whole range of H* coverages registered (θH=0.2-0.8) by applying 

site energy distribution treatments. Here, we illustrate the treatment for heterogeneous surfaces which 

have the probability of finding adsorption sites with a heat of adsorption between ( )
H

HQ


 and ( )
H

HQ


 + d

( )
H

HQ


 that is described by the distribution function f(QH)dQH (site QH distribution treatment). As (θH) 

represent the sum of all those different adsorptions (with different QH), the H* coverages are then given 

by:  

( ) ( )


=
0 HHHH dQQQf        (S48) 

where ( )HQ  can be taken as the local Langmuir isotherm for H2 dissociative adsorption on sites with 

heat of adsorption equal to ( )
H

HQ


: 

( )
( )
( ) 21

HH

21
HH

H

2

2

PK1

PK
Q

+
=        (S49) 

which can be written in terms of QH and ΔSH of adsorption: 

( )

( )

( ) 21

0

HRT

Q

R

QS

21

0

HRT

Q

R

QS

H

P

P
ee1

P

P
ee

Q

2

HHH

2

HHH

























+


























=
















 
















 

     (S50) 

P0 is the standard state pressure, taken as 101.325 kPa (1 atm), and ΔSH is a linear function of QH (Fig. S2 

for Plot of ΔSH vs. ( )
H

HQ


): 

( ) ( ) bQaQS
H

HHH +−=


       (S51) 

where a and b are constants that come from the linear fitting of the ΔSH vs. ( )
H

HQ


 data (Table S1). ΔSH 

in this case comes from the Langmuir analysis of the adsorption data and does not include the 

configurational part of the entropy; KH is defined as in Equation (S49). Isosteric heats of adsorption 

( ( )
H

HQ


) were obtained by the van't Hoff equation. 
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Table S1. Parameters for H2 dissociative adsorption isotherm on Pt (1.6 % wt. Pt/Al2O3; 9.1 nm and 3.0 

nm mean Pt cluster size) given by site ( )
H

HQ


 distribution treatment (Eq. S43).  

Parameter 
9.1 nm 3.0 nm 

Initiala Finalb Initiala Finalb 

a (K-1) Eq. S5 0.0015 0.0017 0.0014 0.0014 

b (J mol-1 K-1) Eq. S5 48.1 48.1 36.2 35.6 

c (J mol-1) Eq. S7 86316 86316 94553 94553 

d (J mol-1) Eq. S7 118350 118350 147830 147830 

e (J mol-1) Eq. S7 73744 73744 91454 92596 
a Initial estimates for a and b from linear fitting of ΔSH vs. ( )

H
HQ


 data (Eq. S51) and for c,d and e 

from quadratic fitting of ( )
H

HQ


 vs. θH data (Eq. S53) 

b Adjusted values after fitting of adsorption data with Equation (S55) 

 

The site energy distribution f(QH) is defined as: 

( )
H

H
H

dQ

d
Qf


=          (S52) 

which can be derived from the changes in ( )
H

HQ


with H* coverage (Fig. 4a). We have interpolated 

between data points by considering that ( )
H

HQ


changes with the square of θH as: 

( ) e.d.cQ H
2

HH
H

+−=


       (S53) 

where c, d and e are constants, that as first approximation are estimated from the quadratic fitting for the 

( )
H

HQ


 vs. θH data (Table S1 for first estimates of these parameters). The distribution of energy site is 

then given by: 

( )
H

2H
Q.c4e.c4d

1
Qf

+−
=

       (S54)
 

Substituting Equations (S31) and (S27) into Equation (S25) gives the H* coverages as a function of QH, 

2HP and T: 
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(S55)
 

in which, 
MAXH

Q and 
MINH

Q  are the maximum (at θH=0) and minimum values of QH as indicated by the site 

energy distribution. The experimental values for θH as a function of 
2HP at each temperature are fitted 

using Equation (S55), and the parameters d, c and e are obtained (first estimates were taken from the 
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quadratic fitting of ( )
H

HQ


 vs. θH data, Eq. S53). Equation (S55) accurately describes the data for H2 

adsorption on Pt at 523-673 K, as shown by the fitting to the H2 adsorption data (dotted lines Fig. S3; 9.1 

nm Pt clusters; Fig. S4 for 3.0 nm Pt clusters), the parity plot of the θH experimental vs. θH calculated by 

Equation (S32) (Fig. S5 (a) 9.1 nm Pt clusters and (b) 3.0 nm Pt clusters) and the ( )
H

HQ


 vs. θH plot given 

by Equation (S53) with c, d and e parameters from fitting with Equation (S55) (Fig. S6 for Pt with 9.1 and 

3.0 Pt cluster size).  

 

The analogous treatment considering the distribution function f(ΔGH)dΔGH that describes the probability 

of finding adsorption sites with change in Gibbs free energy between ΔGH and ΔGH + dΔGH was also 

considered and illustrated in the section S5. This treatment allows the determination of the H2 isotherm 

without separating the entropy and enthalpy components of the equilibrium constant, which can be then 

obtained from the variation of ΔGH with temperature. Site enthalpy and entropy distributions obtained 

after the site ΔGH distribution treatment are consistent with those obtained by the Van’t Hoff equation and 

the site ( )
H

HQ


 distribution treatment described above (Section S5, Fig. S12). 

 

 
Figure S2. Loss in entropy (ΔSH) upon H2 dissociative adsorption on Pt (1.6 % wt. Pt/Al2O3; 3.0 nm ( ) 

and 9.1 nm ( ) mean cluster size) as a function of the isosteric heat of adsorption (QH). Dotted lines from 

linear fitting. 
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Figure S3. Adsorption isotherms for H2 dissociative adsorption on 1.6 % wt. Pt/Al2O3 (9.1 nm mean 

cluster size) at (a) 673 K ( ), 623 K ( ), 573 K ( ) and 523 K ( ), and (b) 648 K ( ), 598 K ( ) and 

548 K ( ). Dotted lines fitting from site QH distribution treatment (Eq. S55). 

 
Figure S4. Adsorption isotherms for H2 dissociative adsorption on 1.6 % wt. Pt/Al2O3 (3.0 nm mean 

cluster size) at 673 K ( ), 623 K ( ), 573 K ( ) and 523 K ( ). Dotted lines fitting from site energy 

distribution treatment (Eq. S55). 
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Figure S5. Parity plot of the θH experimental vs. θH calculated by site QH distribution treatment (Eq. (S55)) 

for H2 dissociative adsorption on 1.6 % wt. Pt/Al2O3 ((a) 9.1 nm and (b) 3.0 mean cluster size) at 673 K (

), 648 K (+), 623 K ( ), 598 K ( ), 573 K ( ), 548 K (×) and 523 K ( ). 

 

 
Figure S6. Isosteric heat of adsorption ( ( )

H
HQ


; Eq. (S53)) as a function of H* coverage (θH) during H2 

dissociative adsorption on 1.6 % wt. Pt/Al2O3 (3.0 nm ( ) and 9.1 nm ( ) mean cluster size) after fitting 

of adsorption data with isotherm derived by the site QH distribution treatment (Eq. (S55); 523-673 K); QH 

for Pt samples with 3.0 nm ( ) and 9.1 nm ( ) mean cluster size obtained by the van´t Hoff equation are 

plotted here for comparison. 
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Section S5. Local Langmuir Isotherm for Non-Uniform Surfaces: ΔG Approach 

 

The isotherm for H2 adsorption on a heterogeneous surface with a probability of finding adsorption sites 

with ΔGH between ΔGH and ΔGH + d ΔGH, described by the distribution function f(ΔGH)dΔGH, and with 

hydrogen coverages (θH), is given by:  

( ) ( ) ( )


=
0 HHHHHH GdGGfT,P,G

2
    (S56) 

where ( )HG  is the local Langmuir isotherm  
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0
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H
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=







 −








 −

      (S57) 

in which, P0 is the standard state pressure, taken as 1 atm (101.325 kPa). 

The site energy distribution f(ΔGH) at each temperature is defined as: 

( )
H

H
H

Gd

d
Gf




=         (S58) 

which can be derived from the changes in ( )
T,H

H
G


 with H* coverage and temperature (Fig. S7). 

( )
T,H

H
G


  as a function of H* coverage and temperature was calculated from the following equation: 

( )























−


−=



2

H

H

H

0
T,H

1P

P
lnRTG

2

H
     (S59) 

( )
T,H

H
G


  changes with the square of θH as: 

( ) e.d.cG H
2

HT,H
H

−+−=


      (S60) 

where c, d and e are constants that are estimated from the quadratic fitting for the ( )
T,H

H
G


  vs. θH data 

(Tables S2-S3).  
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Figure S7. Change in Gibbs free energy (ΔGH) as a function of the H* coverage (θH) during H2 

dissociative adsorption on Pt (1.6 % wt. Pt/Al2O3, (a) 9.1 nm and (b) 3.0 nm mean cluster diameter) at 673 

K ( ), 648 K (+), 623 K ( ), 598 K ( ), 573 K ( ), 548 K (×) and 523 K ( ). 
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Substituting Equation (S57) and (S61) into Equation (S56) gives the H* coverages as a function of ΔGH, 

2HP and T: 
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in which, 
MAXH

G and 
MINH

G  are the maximum (at θH=0) and minimum values of ΔGH as indicated by the 

site energy distribution at each temperature. The experimental values for θH as a function of 
2HP  at each 

temperature are fitted using Equation (S62), and the parameters d, c and e are optimized. Equation (S62) 

accurately describes the data for H2 adsorption on Pt at 523-673 K, as shown by the fitting of the data for 

H2 adsorption on Pt (dotted lines Fig. S8-9) and by the parity plot of the θH experimental vs. θH calculated 

(Eq. (S62), Fig. S10). 

The enthalpy (QH) and entropy components (ΔSH) of the change in Gibbs free energy were then obtained 

from linear fitting of ΔGH vs. T data at each H* coverage ( ( ) TSQG HHT,H
H

−=


;Fig. S11), where the 

slope gives the loss in entropy upon adsorption and the intercept gives the isosteric heat of adsorption. 
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Figure S12 shows the isosteric heat of adsorption and the loss in entropy as a function of the H* coverage, 

which are consistent with those found by the Van’t Hoff equation and the site ( )
H

HQ


 distribution 

treatment. 

 

Table S2. Parameters for H2 dissociative adsorption isotherm on Pt (1.6 % wt. Pt/Al2O3; 9.1 nm mean 

cluster size) given by site ΔGH distribution treatment (Eq. S62).  

               Parameter 

T(K) 
c (J mol-1) d (J mol-1) e (J mol-1) 

Initiala Finalb Initiala Finalb Initiala Finalb 

673 13263 13263 11827 11827 33577 33577 

648 15936 15936 15750 15750 35063 35063 

623 18609 18609 19674 19674 36549 36549 

598 21282 21282 23597 23597 38036 38036 

573 23956 23956 27521 27521 39522 39522 

548 26629 26629 31444 31444 41008 41008 

523 29302 29302 35368 35368 42494 42494 
a Initial estimates for c, d and e from quadratic fitting of ( )HG  vs. θH data (Fig. S7; Eq. S60) 

b Adjusted values after fitting of adsorption data with Equation (S62) 

 

 

Table S3. Parameters for H2 dissociative adsorption isotherm on Pt (1.6 % wt. Pt/Al2O3; 3.0 nm mean 

cluster size) given by site ΔGH distribution treatment (Eq. S62).  

               Parameter 

T(K) 
c (J mol-1) d (J mol-1) e (J mol-1) 

Initiala Finalb Initiala Finalb Initiala Finalb 

673 31365 31365 29223 29223 34236 34236 

623 37527 37527 39873 39873 39168 39168 

573 43689 43689 50522 50522 44100 44100 

523 49851 49851 61171 61171 49032 49032 
a Initial estimates for c, d and e from quadratic fitting of ( )HG  vs. θH data (Fig. S7; Eq. S60) 

b Adjusted values after fitting of adsorption data with Equation (S62) 
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Figure S8. Adsorption isotherms for H2 dissociative adsorption on 1.6 % wt. Pt/Al2O3 (9.1 nm mean 

cluster size) at (a) 673 K ( ), 623 K ( ), 573 K ( ) and 523 K ( ), and (b) 648 K ( ), 598 K ( ) and 

548 K ( ). Dotted lines fitting from site ΔGH distribution treatment. 

  
Figure S9. Adsorption isotherms for H2 dissociative adsorption on 1.6 % wt. Pt/Al2O3 (9.1 n mean cluster 

diameter) at (a) 673 K ( ), 623 K ( ), 573 K ( ) and 523 K ( ). Dotted lines fitting from site ΔGH 

distribution treatment. 
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Figure S10. Parity plot of the θH experimental vs. θH calculated by site ΔGH distribution treatment (Eq. 

S39) for H2 dissociative adsorption on 1.6 % wt. Pt/Al2O3 ((a) 9.1 nm and (b) 3.0 nm Pt cluster size) at 

673 K ( ), 648 K (+), 623 K ( ), 598 K ( ), 573 K ( ), 548 K (×) and 523 K ( ). 

 

 
Figure S11. Change in Gibbs free energy (ΔGH) upon H2 dissociative adsorption on 1.6 % wt Pt/Al2O3 

((a) 9.1 nm and (b) 3.0 nm mean Pt cluster size) as a function of the temperature at 0.2 ( ), 0.3 ( ), 0.4 

(×), 0.5 ( ), 0.6 ( ), 0.7 ( ) and 0.8 (+) H* coverage (θH); obtained from the site ΔGH distribution 

treatment. 
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Figure S12. Isosteric heat of adsorption ((a); QH; from intercept Fig. S11) and loss in entropy ((b); ΔSH; 

from slope Fig. S11) as a function of H* coverage (θH) during H2 dissociative adsorption on 1.6 % wt. 

Pt/Al2O3 (3.0 nm ( ) and 9.1 nm ( ) mean Pt cluster size) after fitting of adsorption data with isotherm 

derived by the site ΔGH distribution treatment (Eq (S62); 523-673 K); QH and ΔSH for Pt samples with 

3.0 nm ( ) and 9.1 nm ( ) mean cluster size obtained by the Van´t Hoff equation are plotted here for 

comparison. 
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Section S6. Diffusion Barrier—Frustrated Translations 

Figure S13 shows the translational entropy calculated as frustrated translations, where the 2-D translation 

is treated as two identical vibrations parallel to the surface (νft). These vibrations can be estimated as 

harmonic vibrations [2]: 

H

2

d

d
ft

m2

E


=

        (S63)
 

where Ed is the diffusion barrier, λd is the nearest-neighbor Pt-Pt distance (0.277 nm), and mH is the H* 

mass. 

The entropy for the frustrated translations (Sa,frustrated) for H* is then calculated from the vibrational 

component given by Equation (S60). 

 

 
Figure S13. Frustrated translational entropy (Sa,frustrated) for H* as a function of the diffusion barrier for 

lateral movement across the Pt surface (598 K). 
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Section S7. Detailed DFT Calculation Results 

 

Table S4. Adsorption energies for H* on a Pt (111) surface at 593 K using the RPBE exchange-

correlation functional. Table SXX in the SI shows the same data using the PW-91 functional.  

Unit 

Cell 

H* 

Covg. 
Mode 

ΔE0,H ΔZPVEH ΔHvib,H ΔSvib,H ΔGvib,H ΔHH QH2
a ΔSH

b SH*
c ΔGH Frequenciesd 

kJ mol−1 kJ mol−1 kJ mol−1 J mol−1 K−1 kJ mol−1 kJ mol−1 kJ mol−1 J mol−1 K−1 J mol−1 K−1 kJ mol−1 cm–1 

1 × 1 1 atop -20 5 6 18 -5 -17 35 -57 18 17 2249 401 400 

1 × 1 1 fcc -19 1 5 14 -3 -21 42 -62 14 15 1189 601 599 

1 × 1 1 hcp -14 1 6 15 -3 -17 33 -60 15 19 1197 543 538 

1 × 2 1/2 atop -26 5 6 19 -5 -23 46 -57 19 10 2258 381 379 

1 × 2 1/2 fcc -24 1 5 14 -3 -27 53 -61 14 10 1144 612 581 

1 × 2 1/2 hcp -20 0 6 15 -3 -23 46 -60 15 13 1151 560 532 

1 × 3 1/3 atop -26 5 6 19 -5 -24 47 -56 19 10 2260 376 374 

1 × 3 1/3 fcc -26 1 5 14 -3 -29 57 -61 14 8 1131 621 585 

1 × 3 1/3 hcp -22 0 6 15 -3 -24 49 -60 15 11 1142 559 528 

2 × 2 1/4 atop -29 5 6 19 -5 -27 53 -56 19 7 2259 369 369 

2 × 2 1/4 fcc -27 1 5 14 -3 -30 59 -61 14 7 1100 607 604 

2 × 2 1/4 hcp -23 0 6 15 -3 -26 52 -60 15 10 1115 548 547 

2 × 3 1/6 atop -29 5 6 19 -5 -27 53 -56 19 7 2258 366 363 

2 × 3 1/6 fcc -28 1 5 14 -3 -30 61 -61 14 6 1093 601 596 

2 × 3 1/6 hcp -23 0 6 16 -3 -26 53 -60 16 9 1111 538 533 

3 × 3 1/9 atop -29 5 6 20 -5 -26 52 -56 20 7 2258 360 358 

3 × 3 1/9 fcc -28 1 5 14 -3 -31 61 -61 14 6 1086 601 600 

3 × 3 1/9 hcp -23 0 6 16 -3 -26 52 -60 16 9 1103 537 536 

3 × 4 1/12 atop -30 5 6 19 -5 -27 54 -56 19 6 2263 366 364 

3 × 4 1/12 fcc -29 1 5 14 -3 -31 62 -61 14 5 1084 603 598 

3 × 4 1/12 hcp -24 0 6 16 -3 -27 54 -60 16 9 1102 540 530 

4 × 4 1/16 atop -31 5 6 19 -5 -28 56 -56 19 5 2262 369 368 

4 × 4 1/16 fcc -29 1 5 14 -3 -32 63 -61 14 5 1086 593 588 

4 × 4 1/16 hcp -24 0 6 16 -4 -27 54 -59 16 8 1102 524 523 

4 × 4 1 atop -10 6 6 16 -4 -7 15 -59 16 28 2241 451 450 

4 × 4 1 fcc -9 2 5 13 -3 -11 22 -63 13 26 1164 651 649 

4 × 4 1 hcp -2 1 5 14 -3 -5 9 -62 14 32 1162 610 607 

a QH2 = −2(ΔHH) b Gas-phase H2 has Strans of 132 J mol−1 K−1 and Srot of 19 J mol−1 K−1. c No configurational entropy is included 

here. d Vibrational frequency of H2(g) is 4331 cm−1. 
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Table S5. Adsorption energies for H* on a Pt (111) surface at 593 K using the PW-91 exchange-

correlation functional.  

Unit 

Cell 

H* 

Covg. 
Mode 

ΔE0,H ΔZPVEH ΔHvib,H ΔSvib,H ΔGvib,H ΔHH QH2
a ΔSH

b SH*
c ΔGH Frequenciesd 

kJ mol−1 kJ mol−1 kJ mol−1 J mol−1 K−1 kJ mol−1 kJ mol−1 kJ mol−1 J mol−1 K−1 J mol−1 K−1 kJ mol−1 cm–1 

1 × 1 1 atop -33 5 6 19 -5 -30 60 -57 19 4 2249 401 400 

1 × 1 1 fcc -35 2 5 13 -3 -37 73 -62 13 0 1189 601 599 

1 × 1 1 hcp -30 1 5 15 -3 -32 65 -60 15 4 1197 543 538 

1 × 2 1/2 atop -38 5 6 19 -5 -35 70 -56 19 -2 2258 381 379 

1 × 2 1/2 fcc -40 1 5 13 -3 -42 84 -62 13 -6 1144 612 581 

1 × 2 1/2 hcp -36 1 6 15 -3 -38 77 -60 15 -3 1151 560 532 

1 × 3 1/3 atop -38 5 6 19 -5 -36 71 -56 19 -2 2260 376 374 

1 × 3 1/3 fcc -42 1 5 14 -3 -44 88 -62 14 -8 1131 621 585 

1 × 3 1/3 hcp -37 1 5 15 -3 -40 80 -61 15 -4 1142 559 528 

2 × 2 1/4 atop -41 5 6 19 -5 -39 77 -56 19 -5 2259 369 369 

2 × 2 1/4 fcc -43 1 5 13 -3 -45 90 -62 13 -8 1100 607 604 

2 × 2 1/4 hcp -39 0 6 16 -3 -42 83 -60 16 -6 1115 548 547 

2 × 3 1/6 atop -41 5 6 20 -5 -38 77 -55 20 -6 2258 366 363 

2 × 3 1/6 fcc -44 1 5 13 -3 -46 92 -62 13 -9 1093 601 596 

2 × 3 1/6 hcp -39 0 6 15 -3 -42 83 -60 15 -6 1111 538 533 

3 × 3 1/9 atop -41 5 6 20 -5 -38 76 -55 20 -5 2258 360 358 

3 × 3 1/9 fcc -44 1 5 14 -3 -46 92 -62 14 -9 1086 601 600 

3 × 3 1/9 hcp -39 0 6 15 -3 -42 83 -60 15 -6 1103 537 536 

3 × 4 1/12 atop -42 5 6 20 -5 -39 78 -55 20 -6 2263 366 364 

3 × 4 1/12 fcc -44 1 5 13 -3 -47 93 -62 13 -10 1084 603 598 

3 × 4 1/12 hcp -40 0 6 15 -3 -42 85 -60 15 -7 1102 540 530 

4 × 4 1/16 atop -43 5 6 20 -5 -40 80 -56 20 -7 2262 369 368 

4 × 4 1/16 fcc -45 1 5 14 -3 -47 94 -61 14 -11 1086 593 588 

4 × 4 1/16 hcp -40 0 6 15 -3 -43 85 -60 15 -7 1102 524 523 

a QH2 = −2(ΔHH) b Gas-phase H2 has Strans of 132 J mol−1 K−1 and Srot of 19 J mol−1 K−1. c No configurational entropy is included 

here. d Vibrational frequency of H2(g) is 4331 cm−1. 
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