Supplementary information for

Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodiumrhenium catalysts

Mei Chia, Yomaira J. Pagán-Torres, David Hibbitts, Qiaohua Tan, Hien N. Pham, Abhaya K.

Datye, Matthew Neurock, Robert J. Davis, James A. Dumesic

Contents		Page
1.	Effect of metal-loading ratio on catalytic activity and selectivity (Table S1)	S 2
2.	Effect of pretreatment conditions on hydrogenolysis activity and extent of Re leaching (Table S2)	S 3
3.	Comparison of specific hydrogenolysis rate over 4 wt% Rh-ReO _x /C (1:0.5) and DFT-calculated carbenium ion energies for various cyclic ethers and polyols (Table S3)	S 4
4.	Hydrogenolysis rates of 2-(hydroxymethyl)tetrahydro-pyran 1 to 1,6- hexanediol 2 over 4 wt% Rh-ReO _x /C (1:0.5) in a continuous flow reaction system with varying reactant concentrations and P_{H2} (Table S4)	S 5
5.	DFT-calculated metal-catalyzed ring-opening of tetrahydrofurfuryl alcohol 3 (Figure S1)	S 6
6.	DFT-optimized structure for water-stabilized tetrahydrofurfuryl carbenium ion intermediate (Figure S2)	S7

1. Effect of metal-loading ratio on catalytic activity and selectivity

Table S1. Effect of metal-loading ratio on catalytic activity and hydrogenolysis selectivity of 2-(hydroxymethyl)tetrahydropyran 1 to 1,6-hexanediol 2^a .

Catalyst	Rh:M ^b (mol:mol)	Time (h)	Catalyst: 1 (g:g)	Conversion (%)	Selectivity to 2 (%)	Specific Rate ^c (µmolg ⁻¹ min ⁻¹)
Rh-ReO _x /C	1:0.25	5	1:9	48	82	132
	1:0.5	5	1:9	55	86	153
	1:1	5	1:9	38	92	109
		6	1:9	46	89	99
Rh-MoO _x /C	1:0.05	12	2:7	40	81	16
	1:0.1	12	2:7	55	84	22
	1:0.25	12	2:7	48	85	19
	1:0.5	12	2:7	48	77	20

^{*a*}The nominal loading of Rh was 4 wt% for all catalysts. Reaction conditions: 393 K, 80 bar H₂. Reactant mixtures were 5 wt% **1** in water. ^{*b*}M = Re or Mo. ^{*c*}Specific rate defined as the moles of **1** reacted per gram of catalyst per minute.

2. Effect of pretreatment conditions on hydrogenolysis activity and extent of Re leaching

Table S2. Effect of catalyst pretreatment temperature on hydrogenolysis activity of 2-(hydroxymethyl)tetrahydropyran 1 over 4 wt% Rh-ReO_x/C (1:0.5) and extent of rhenium leaching.^{*a*}

H ₂ pretreatment temperature (K)	Conversion (%)	Selectivity to 1,6- hexanediol 2 (%)	Specific rate ^b (µmolg ⁻¹ min ⁻¹)	Re leached (%)
No pretreatment	27	97	90	2.0
393	25	93	86	1.2
523	16	99	51	< 0.5

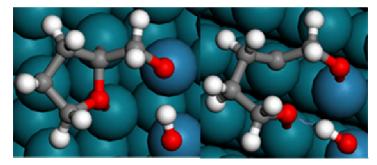
^{*a*}Reaction conditions: 393 K, 34 bar H₂, 4 h, mass ratio of catalyst: $\mathbf{1} = 1:9$. Reactant mixtures were 5 wt% 1 in water. ^{*b*}Specific rate defined as the moles of 1 reacted per gram of catalyst per minute.

3. Comparison of specific hydrogenolysis rate over 4 wt% Rh-ReO_x/C (1:0.5) and DFTcalculated carbenium ion energies for various cyclic ethers and polyols

Table S3. Comparison of specific hydrogenolysis rates over 4 wt% Rh-ReO_x/C (1:0.5) and DFT-calculated carbenium ion energies for various cyclic ethers and polyols.

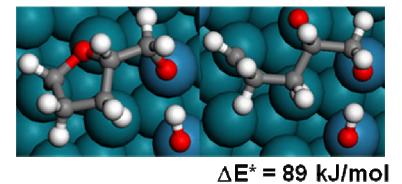
	Reactant	Specific rate	Carbenium Ion	Oxocarbenium Ion	
Struc	ture Name	(µmolg ⁻¹ min ⁻¹)	Energies (kJ mol ⁻¹)	Energies (kJ mol ⁻¹)	
Cyclic Ether	s with α-OH Groups				
s SF	tetrahydrofurfuryl alcohol 3	180	-762	-852	
CH CH	2-(hydroxymethyl)tetrahydro-pyran 1	90	-756	-845	
β-Diols					
or or	2,4-pentanediol 15	117	-754/-799	-857	
C+ C+	2,3-butanediol 16	156	-762	-857	
1, 2-Diols an	d Polyols				
HO CH	1,2,4-butanetriol	47	-743	-835	
но он он	glycerol 4	45	-732	-810	
ан Но,	1,2-butanediol 14	62	-736	-830	
	1,2,6-hexanetriol	23	-733	-825	
	1,2-hexanediol	40	-734	-832	
+C	1,2-pentanediol 13	32	-741	-833	
Substituted (Cyclic Ethers				
ů	2-methyltetrahydropyran 5	7	-742	-	
⟨	2-methyltetrahydrofuran 7	7	-743	-	
Cyclic Ether	s and α,ω-Diols				
Ô	tetrahydropyran 6	-	-710	-	
ð	tetrahydrofuran 8	-	-715	-	
+ C CH	1,6-hexanediol 2	-	-712	-	
+CC+	1,5-pentanediol 11	4	-710	-	
HO CA	1,4-butanediol 12	8	-707	-	

4. Hydrogenolysis rates of 2-(hydroxymethyl)tetrahydro-pyran 1 to 1,6-hexanediol 2 over 4 wt% Rh-ReO_x/C (1:0.5) in a continuous flow reaction system with varying reactant concentrations and P_{H2}


Table S4. Hydrogenolysis rates of 2-(hydroxymethyl)tetrahydropyran 1 to 1,6-hexanediol 2^{a} over 4 wt% Rh-ReOx/C (1:0.5) in a continuous flow reaction system

Concentration of 1 (μ mol mL ⁻¹)	P _{H2} (psi)	Conversion (%)	Selectivity to 2 (%)	Specific rate ^b (µmolg ⁻¹ min ⁻¹)
439	520	20	92	32
226	520	31	90	24
94	520	20	85	7
435	760	14	87	21
	520	10	91	15
	340	5	85	10

^{*a*}Reaction conditions: 393 K, water as solvent. The catalyst was pretreated in flowing H_2 (60 cm³ (STP) min⁻¹) at 523 K for 4 h and cooled to the reaction temperature prior to initiation of liquid feed flow. ^{*b*}Specific rate defined as the moles of **1** reacted per gram of catalyst per minute.


5. DFT-calculated metal-catalyzed ring-opening of tetrahydrofurfuryl alcohol 3

A) Substituted C-O Bond

∆E* = 48 kJ/mol

B) Unsubstituted C-O Bond

Figure S1. DFT-calculated structures and activation barriers for the metal-catalyzed ring opening of tetrahydrofurfuryl alcohol **3** at the **a**) substituted and **b**) unsubstituted C-O bonds over a model RhReOH alloy surface.

6. DFT-optimized structure for water-stabilized tetrahydrofurfuryl carbenium ion intermediate

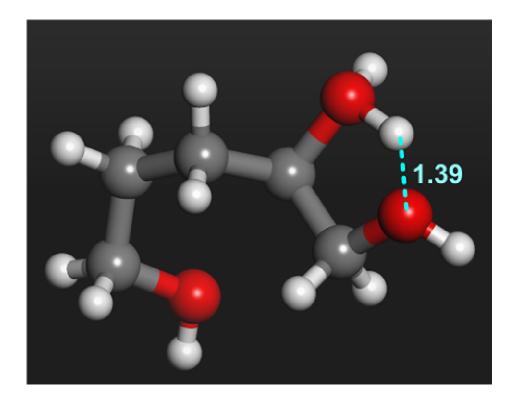


Figure S2. DFT-optimized structure for the water-stabilized tetrahydrofurfuryl carbenium ion intermediate.