Hibbitts Catalysis Lab

Endeavor to Understand Catalysts
at the Molecular Level
by Combining Kinetic and Isotopic Experiments with
Computational Chemistry

Simplify DFT Workflows
and Overcome Technical Barriers
by Developing a
Computational Catalysis Interface (CCI)

Shale/Natural Gas Upgrading


Fischer-Tropsch Synthesis

Methane Coupling

Biomass/Oil Upgrading

Alkane Cracking


Denitrification, Desulfurization


Curved, Crowded, and Supported Metals

Global Minimization of Zeolite
Frameworks and Adsorbates

Periodic Trends and Substituent Effects

Contact Info

Hibbitts Office
CHE 221
Student Office
CHE 227
Kinetics Lab
CHE 230

Recent Publications
(View All)


33. M. DeLuca, C. Janes, and D. Hibbitts “Alkene, Diene, and Formaldehyde Hydrogenation in H-MFI and H-CHA Zeolite Frameworks during Methanol-to-Olefins Reactions” Submitted, (2019)

32. A. Almithn and D. Hibbitts, “Impact of Metal and Heteroatom Identities in the Hydrogenolysis of C–X Bonds (X = C, N, O, S, and Cl)” Submitted, (2019)

31. J. Di Iorio, A. Hoffman, C. Nimlos, S. Nystrom, D. Hibbitts, R. Gounder, “Mechanistic Origins of the High-Pressure Inhibition of Methanol Dehydration Rates in Small-Pore Acidic Zeolites.” Submitted, (2019)

30. P. Kravchenko, C. Plaisance, and D. Hibbitts, “A New Computational Interface for Catalysis.” ChemRXiv Pre-print, (2019)

29. M. DeLuca and D. Hibbitts, “Prediction of C6–C12 Interconversion Rates Using Novel Zeolite-Specific Kinetic Monte Carlo Simulation Methods.” ChemRXiv Pre-print, (2019)

28. M. Witzke, A. Almithn, C. Coonrod, M. Triezenberg, D. Hibbitts, and D. Flaherty, “In situ Spectroscopic Methods for Isolating Reactive Intermediate Structures during Hydrogenolysis Reactions.” Submitted, (2019)

27. M. DeLuca, P. Kravchenko, A. Hoffman, and D. Hibbitts, “Mechanism and Kinetics of Methylating C6–C12 Methylbenzenes with Methanol and DME in H-MFI Zeolites.” ACS Catal., 9 (2019) 6444

26. A. Hoffman, M. Deluca, and D. Hibbitts, “Restructuring of MFI Framework Zeolite Models and their Associated Artifacts in Density Functional Theory Calculations.” J. Phys. Chem. C., 123 (2019) 6572.

25. A. Almithn and D. Hibbitts, “Comparing Rate and Mechanism of Ethane Hydrogenolysis on Transition Metal Catalysts.” J. Phys. Chem. C., 123 (2019) 5421.

24. M. Garcia-Dieguez, D. Hibbitts, and E. Iglesia, “Hydrogen Chemisorption Isotherms on Pt Particles at Catalytic Temperatures: Langmuir and Two-Dimensional Gas Models Revisited.” J. Phys. Chem. C., 123 (2019) 8447.


23. M. Cordon, J. Harris, J. Vega-Vila, J. Bates, S. Kaur, M. Gupta, M. Witzke, E. Wegener, J. Miller, D. Flaherty, D. Hibbitts, R. Gounder, “Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores.” J. Am. Chem. Soc., 140 (2018) 14244.

22. S. Nystrom, A. Hoffman, and D. Hibbitts, “Tuning Brønsted Acid Strength by Altering Site Proximity in CHA Framework Zeolites.” ACS Catal., 8 (2018) 7842.

21. M. Witzke, A. Almithn, C. Coonrod, D. Hibbitts, and D. Flaherty, “Mechanisms and Active Sites for C-O Bond Rupture within 2-Methyltetrahydrofuran over Nickel Phosphide Catalysts.” ACS Catal., 8 (2018) 7141.

20. A. Almithn and D. Hibbitts, “Effects of Catalyst Model and High Adsorbate Coverages in ab initio Studies of Alkane Hydrogenolysis.” ACS Catal., 8 (2018) 6375.

19. A. Almithn and D. Hibbitts, “Supra-Monolayer Coverages on Small Metal Clusters and Their Effects on H2 Chemisorption Particle Size Estimates.” AIChE J., 64 (2018) 3109. Invited.